variable_selection function

Variable selection

Variable selection

This function performs variable selection, estimates a new vector eta and a new vector gamma

variable_selection(Y, X, gamma, k_max = 1, n_iter = 100, method = "min", nb_rep_ss = 1000, threshold = 0.6)

Arguments

  • Y: Observation matrix
  • X: Design matrix
  • gamma: Initial gamma vector
  • k_max: Number of iteration to repeat the whole algorithm
  • n_iter: Number of iteration for Newton-Raphson algorithm
  • method: Stability selection method: "min" or "cv". In "min" the smallest lambda is chosen, in "cv" cross-validation lambda is chosen for stability selection. The default is "min"
  • nb_rep_ss: Number of replications in stability selection step. The default is 1000
  • threshold: Threshold for stability selection. The default is 0.9

Returns

  • estim_active: Vector of stimated active coefficients

  • eta_est: Vector of estimated eta values

  • gamma_est: Vector of estimated gamma values

References

M. Gomtsyan et al. "Variable selection in sparse multivariate GLARMA models: Application to germination control by environment", arXiv:2208.14721

Author(s)

Marina Gomtsyan

Maintainer: Marina Gomtsyan marina.gomtsyan@agroparistech.fr

Examples

data(Y) I=3 J=100 T=dim(Y)[2] q=1 X=matrix(0,nrow=(I*J),ncol=I) for (i in 1:I) { X[((i-1)*J+1):(i*J),i]=rep(1,J) } gamma_0 = matrix(0, nrow = 1, ncol = q) result=variable_selection(Y, X, gamma_0, k_max=1, n_iter=100, method="min", nb_rep_ss=1000, threshold=0.6) estim_active = result$estim_active eta_est = result$eta_est gamma_est = result$gamma_est
  • Maintainer: Marina Gomtsyan
  • License: GPL-2
  • Last published: 2022-09-02

Useful links