Calculates imprecision for n multi-level random regressions perfromed to n simulated dats sets.
Calculates imprecision for n multi-level random regressions perfromed to n simulated dats sets.
Calculates imprecision for an object created with anal.MultiRR.
Imprecision(x)
Arguments
x: Object created with Anal.MultiRR.
Returns
A list of data frames with the imprecision for all the estimated variance components and repeatabilities.
References
Araya-Ajoy Y.G., Mathot, K. J., Dingemanse N. J. (2015) An approach to estimate short-term, long-term, and reaction norm repeatability. Methods in Ecology and Evolution.
Author(s)
Yimen Araya
See Also
Sim.MultiRR, Anal.MultiRR
Examples
#Example 1: Balanced sampling design.#Define sample sizes.n.ind <-c(40,50)##Numbers of individuals to simulate.SeriesPerInd <- c(4,5)##Number of series per individual to simulate.ObsPerLevel <-2##Number of observations per level in the environmental gradient.#Number of simulated data sets, use at least 10.n.sim=3#Define the environmetal gradient.EnvGradient <- c(-0.5,0.5)#Define the population level parameters.PopInt <-0##Population level intercept.PopSlope <--0.5##Population level slope.#Define individual level parametersVCVInd <-matrix(c(0.3,0.15,0.15,0.3),2,2)##Creates a variance-covariance matrix.#Define series level parametersVCVSeries <-matrix(c(0.3,0.15,0.15,0.3),2,2)##Creates a variance-covariance matrix.#Define the residual variance.ResVar <-0.4#Simulate the data sets.sim.data <- Sim.MultiRR(n.ind=n.ind, SeriesPerInd=SeriesPerInd,ObsPerLevel=ObsPerLevel, EnvGradient=EnvGradient, PopInt=PopInt, PopSlope=PopSlope,VCVInd=VCVInd, VCVSeries=VCVSeries, ResVar=ResVar, n.sim=3)#Analyze the simulated data sets. This may take a while.ressim <- Anal.MultiRR(sim.data)#Summarize the results of the multi-level random regressions. Summary(ressim)#Estimate bias.Bias(ressim)#Estiamte imprecision.Imprecision(ressim)#Estimate power.Power(ressim)