Sim.MultiRR function

Simulate data setes to be analyzed by a multi-level random regression.

Simulate data setes to be analyzed by a multi-level random regression.

Simulate n data sets to be analyzed with a multi-level random regression.

Sim.MultiRR(n.ind, SeriesPerInd, ObsPerLevel, EnvGradient, PopInt, PopSlope, VCVInd, VCVSeries, ResVar, n.sim, unbalanced = FALSE, prop.ind, complete.observations = TRUE, n.obs)

Arguments

  • n.ind: A vector consisting of the total individuals sampled.
  • SeriesPerInd: A vector consisting of the number of series sampled for each individual.
  • ObsPerLevel: The number of observations per series in each level of the environment.
  • EnvGradient: A vector consisting of the levels in the environmental gradient.
  • PopInt: Population level intercept.
  • PopSlope: Population level slope.
  • VCVInd: A positive definite variance covariance matrix of dimensions 2 X 2, defining the among-individual variance in intercepts and slopes in the diagonals and their covariance in the off diagonals.
  • VCVSeries: A positive definite variance covariance matrix of dimensions 2 X 2, defining the among-series variance in intercepts and slopes in the diagonals and their covariance in the off diagonals.
  • ResVar: Residual variance
  • n.sim: Number of data sets to simulate.
  • unbalanced: Optional argument determining whether not all the individuals were assayed the same number of series. The default is "FALSE".
  • prop.ind: When unbalanced = "TRUE", A vector that has the same length as the number of series per individual, with the proportion of individuals measured n times. All individuals should have been measured once (1,.,.,.).
  • complete.observations: Optional argument determining whether all the levels were assayed the same number of times. The default is "TRUE".
  • n.obs: The total number of observations, if complete.observartions = "FALSE".

Returns

A list of data sets to be analyzed by Anal.MultiRR.

References

Araya-Ajoy Y.G., Mathot, K. J., Dingemanse N. J. (2015) An approach to estimate short-term, long-term, and reaction norm repeatability. Methods in Ecology and Evolution.

Author(s)

Yimen Araya

See Also

Anal.MultiRR

Examples

#Example 1: Balanced sampling design. #Define sample sizes. n.ind <-c(40, 50) ##Numbers of individuals to simulate. SeriesPerInd <- c(4, 5) ##Number of series per individual to simulate. ObsPerLevel <- 2 ##Number of observations per level in the environmental gradient. #Number of simulated data sets, use at least 10. n.sim=3 #Define the environmetal gradient. EnvGradient <- c(-0.5, 0.5) #Define the population level parameters. PopInt <- 0 ##Population level intercept. PopSlope <- -0.5 ##Population level slope. #Define individual level parameters VCVInd <-matrix(c(0.3, 0.15, 0.15, 0.3),2,2) ##Creates a variance-covariance matrix. #Define series level parameters VCVSeries <-matrix(c(0.3, 0.15, 0.15, 0.3),2,2) ##Creates a variance-covariance matrix. #Define the residual variance. ResVar <- 0.4 #Simulate the data sets. sim.data <- Sim.MultiRR(n.ind=n.ind, SeriesPerInd=SeriesPerInd, ObsPerLevel=ObsPerLevel, EnvGradient=EnvGradient, PopInt=PopInt, PopSlope=PopSlope, VCVInd=VCVInd, VCVSeries=VCVSeries, ResVar=ResVar, n.sim=3) #Analyze the simulated data sets. This may take a while. ressim <- Anal.MultiRR(sim.data) #Summarize the results of the multi-level random regressions. Summary(ressim) #Estimate bias. Bias(ressim) #Estiamte imprecision. Imprecision(ressim) #Estimate power. Power(ressim) #Example 2: Unbalanced sampling desing. #Define sample sizes. n.ind <-40 ##Numbers of individuals to simulate. SeriesPerInd <- 4 ##Number of series per individual to simulate. ObsPerLevel <- 2 ##Number of observations per level in the environmental gradient. #Define the proportion of individuals that were sampled in all the series. #All individuals were assayed at least once, 0.9 of individuals twice... prop.ind<-c(1, 0.9, 0.8, 0.7) #Define the total number of observations n.obs=300 #Number of simulated data sets, use at least 10. n.sim=3 #Define the environmetal gradient. EnvGradient <- c(-0.5, 0.5) #Define the population level parameters. PopInt <- 0 ##Population level intercept. PopSlope <- -0.5 ##Population level slope. #Define the individual level parameters. VCVInd <-matrix(c(0.3, 0.15, 0.15, 0.3),2,2) ##Creates a variance-covariance matrix. #Define the series level parameters. VCVSeries <-matrix(c(0.3, 0.15, 0.15, 0.3),2,2) ##Creates a variance-covariance matrix. #Define the residual variance. ResVar <- 0.4 #Simulate the data. sim.data <- Sim.MultiRR(n.ind=n.ind, SeriesPerInd=SeriesPerInd, ObsPerLevel=ObsPerLevel, EnvGradient=EnvGradient, PopInt=PopInt, PopSlope=PopSlope, VCVInd= VCVInd, VCVSeries=VCVSeries, ResVar=ResVar, n.sim=n.sim, unbalanced=TRUE, prop.ind=c(1, 0.9, 0.8, 0.7), complete.observations=FALSE, n.obs=n.obs) #Analyze simulated data sets. This may take a while. ressim <- Anal.MultiRR(sim.data) #Summarize the results of the multi-level random regressions. Summary(ressim) #Estimate bias. Bias(ressim) #Estiamte imprecision. Imprecision(ressim) #Estimate power. Power(ressim)
  • Maintainer: Yimen G. Araya-Ajoy
  • License: GPL-2
  • Last published: 2015-10-21

Useful links