NADIA0.4.2 package

NA Data Imputation Algorithms

autotune_Amelia

Perform imputation using Amelia package and EMB algorithm.

autotune_mice

Automatical tuning of parameters and imputation using mice package.

autotune_missForest

Perform imputation using missForest form missForest package.

autotune_missRanger

Perform imputation using missRenger form missRegnger package.

autotune_softImpute

Perform imputation using softImpute package

autotune_VIM_hotdeck

Hot-Deck imputation using VIM package.

autotune_VIM_Irmi

Perform imputation using VIM package and irmi function

autotune_VIM_kNN

K nearest neighbor imputation using VIM package.

autotune_VIM_regrImp

Perform imputation using VIM package and regressionImp function.

fetch_data

Fetch data. Used in mice.reuse.

formula_creating

Creating a formula for use in mice imputation evaluation.

mice.reuse

Reuseble mice function

mids.append

Joining mice objects. Used in mice.reuse.

missMDA.reuse

missMDA.reuse

missMDA_FMAD_MCA_PCA

Perform imputation using MCA, PCA, or FMAD algorithm.

missMDA_MFA

Perform imputation using MFA algorithm.

PipeOpAmelia

PipeOpAmelia

PipeOpHist_B

PipeOpHist_B

PipeOpMean_B

PipeOpMean_B

PipeOpMedian_B

PipeOpMedian_B

PipeOpMice

PipeOpMice

PipeOpMice_A

PipeOpMice_A

PipeOpmissForest

PipeOpmissForest

PipeOpmissMDA_MFA

PipeOpmissMDA_MFA

PipeOpmissMDA_MFA_A

PipeOpmissMDA_MFA_A

PipeOpmissMDA_PCA_MCA_FMAD

PipeOpmissMDA_PCA_MCA_FMAD

PipeOpmissMDA_PCA_MCA_FMAD_A

PipeOpmissMDA_PCA_MCA_FMAD_A

PipeOpmissRanger

PipeOpmissRanger

PipeOpMode_B

PipeOpMode_B

PipeOpOOR_B

PipeOpOOR_B

PipeOpSample_B

PipeOpSample_B

PipeOpSimulateMissings

PipeOpSimulateMissings

PipeOpSoftImpute

PipeOpSoftImpute

PipeOpVIM_HD

PipeOpVIM_HD

PipeOpVIM_IRMI

PipeOpVIM_IRMI

PipeOpVIM_kNN

PipeOpVIM_kNN

PipeOpVIM_regrImp

PipeOpVIM_regrImp

random_param_mice_search

Performing randomSearch for selecting the best method and correlation ...

replace_overimputes

Replace overimputes. Used in mice.reuse.

simulate_missings

Generate MCAR missings in dataset.

Creates a uniform interface for several advanced imputations missing data methods. Every available method can be used as a part of 'mlr3' pipelines which allows easy tuning and performance evaluation. Most of the used functions work separately on the training and test sets (imputation is trained on the training set and impute training data. After that imputation is again trained on the test set and impute test data).

  • Maintainer: Jan Borowski
  • License: GPL
  • Last published: 2022-10-02