Use DPMPM models to synthesize data where there are no structural zeros
DPMPM_nozeros_syn(X, dj, nrun, burn, thin, K, aalpha, balpha, m, vars, seed, silent)
X
: data frame for the original datadj
: a vector recording the number of categories of the variablesnrun
: number of mcmc iterationsburn
: number of burn-in iterationsthin
: thining parameter for outputing iterationsK
: number of latent classesaalpha
: the hyperparameters in stick-breaking prior distribution for alphabalpha
: the hyperparameters in stick-breaking prior distribution for alpham
: number of synthetic datasetsvars
: the names of variables to be synthesizedseed
: choice of random seedsilent
: Default to TRUE. Set this parameter to FALSE if more iteration info are to be printedsyndata: m synthetic datasets
origdata: original data
alpha: saved posterior draws of alpha, which can be used to check MCMC convergence
kstar: saved number of occupied mixture components, which can be used to track whether K is large enough
Useful links