DPMPM_zeros_imp function

Use DPMPM models to impute missing data where there are no structural zeros

Use DPMPM models to impute missing data where there are no structural zeros

DPMPM_zeros_imp(X, MCZ, Nmax, nrun, burn, thin, K, aalpha, balpha, m, seed, silent)

Arguments

  • X: data frame for the data containing missing values
  • MCZ: data frame containing the structural zeros definition
  • Nmax: an upper truncation limit for the augmented sample size
  • nrun: number of mcmc iterations
  • burn: number of burn-in iterations
  • thin: thining parameter for outputing iterations
  • K: number of latent classes
  • aalpha: the hyperparameters in stick-breaking prior distribution for alpha
  • balpha: the hyperparameters in stick-breaking prior distribution for alpha
  • m: number of imputations
  • seed: choice of random seed
  • silent: Default to TRUE. Set this parameter to FALSE if more iteration info are to be printed

Returns

  • impdata: m imputed datasets

  • origdata: original data containing missing values

  • alpha: save posterior draws of alpha, which can be used to check MCMC convergence

  • kstar: saved number of occupied mixture components, which can be used to track whether K is large enough

  • Nmax: saved posterior draws of the augmented sample size, which can be used to check MCMC convergence

  • Maintainer: Jingchen Hu
  • License: GPL (>= 3)
  • Last published: 2022-10-03

Useful links