Use DPMPM models to impute missing data where there are no structural zeros
DPMPM_zeros_imp(X, MCZ, Nmax, nrun, burn, thin, K, aalpha, balpha, m, seed, silent)
X
: data frame for the data containing missing valuesMCZ
: data frame containing the structural zeros definitionNmax
: an upper truncation limit for the augmented sample sizenrun
: number of mcmc iterationsburn
: number of burn-in iterationsthin
: thining parameter for outputing iterationsK
: number of latent classesaalpha
: the hyperparameters in stick-breaking prior distribution for alphabalpha
: the hyperparameters in stick-breaking prior distribution for alpham
: number of imputationsseed
: choice of random seedsilent
: Default to TRUE. Set this parameter to FALSE if more iteration info are to be printedimpdata: m imputed datasets
origdata: original data containing missing values
alpha: save posterior draws of alpha, which can be used to check MCMC convergence
kstar: saved number of occupied mixture components, which can be used to track whether K is large enough
Nmax: saved posterior draws of the augmented sample size, which can be used to check MCMC convergence
Useful links