Generate a CFAR(1) Process
Generate a convolutional functional autoregressive process with order 1.
g_cfar1( tmax = 1001, rho = 5, phi_func = NULL, grid = 1000, sigma = 1, ini = 100 )
tmax
: length of time.rho
: parameter for O-U process (noise process).phi_func
: convolutional function. Default is density function of normal distribution with mean 0 and standard deviation 0.1.grid
: the number of grid points used to construct the functional time series. Default is 1000.sigma
: the standard deviation of O-U process. Default is 1.ini
: the burn-in period.The function returns a list with components: - cfar1: a tmax-by-(grid+1) matrix following a CFAR(1) process.
phi_func= function(x) { return(dnorm(x,mean=0,sd=0.1)) } y=g_cfar1(100,5,phi_func,grid=1000,sigma=1,ini=100)
Liu, X., Xiao, H., and Chen, R. (2016) Convolutional autoregressive models for functional time series. Journal of Econometrics, 194, 263-282.
Useful links