g_cfar2h function

Generate a CFAR(2) Process with Heteroscedasticity and Irregular Observation Locations

Generate a CFAR(2) Process with Heteroscedasticity and Irregular Observation Locations

Generate a convolutional functional autoregressive process of order 2 with heteroscedasticity, irregular observation locations.

g_cfar2h( tmax = 1001, grid = 1000, rho = 1, min_obs = 40, pois = 5, phi_func1 = NULL, phi_func2 = NULL, weight = NULL, ini = 100 )

Arguments

  • tmax: length of time.
  • grid: the number of grid points used to construct the functional time series.
  • rho: parameter for O-U process (noise process).
  • min_obs: the minimum number of observations at each time.
  • pois: the mean for Poisson distribution. The number of observations at each follows a Poisson distribution plus min_obs.
  • phi_func1: the first convolutional function. Default is 0.5x^2+0.5x+0.13.
  • phi_func2: the second convolutional function. Default is 0.7x^4-0.1x^3-0.15*x.
  • weight: the weight function to determine the standard deviation of O-U process (noise process). Default is 1.
  • ini: the burn-in period.

Returns

The function returns a list with components: - cfar2: a tmax-by-(grid+1) matrix following a CFAR(1) process.

  • epsilon: the innovation at time tmax.

Examples

phi_func1= function(x){ return(0.5*x^2+0.5*x+0.13) } phi_func2= function(x){ return(0.7*x^4-0.1*x^3-0.15*x) } y=g_cfar2h(200,1000,1,40,5,phi_func1=phi_func1,phi_func2=phi_func2)

References

Liu, X., Xiao, H., and Chen, R. (2016) Convolutional autoregressive models for functional time series. Journal of Econometrics, 194, 263-282.

  • Maintainer: Xialu Liu
  • License: GPL (>= 2)
  • Last published: 2023-09-24

Useful links