drawPostAnalysis( mcmcout, Y, point.cex =3, text.cex =3, segment.size =0.1, n.cluster =NULL, start =1, frequency =1)
Arguments
mcmcout: NetworkChange output
Y: Input raw data
point.cex: node point size. Default is 3.
text.cex: node label size. Default is 3.
segment.size: segment size. Default is 0.1.
n.cluster: number of cluster. Default is 3.
start: start of ts object
frequency: frequency of ts object
Returns
A plot object
Examples
## Not run: set.seed(1973)## generate an array with two constant blocks data(MajorAlly) Y <- MajorAlly
fit <- NetworkChange(newY, R=2, m=2, mcmc=G, initial.s = initial.s, burnin=G, verbose=0, v0=v0, v1=v1) drawPostAnalysis(fit, Y, n.cluster=c(4,4,3))## End(Not run)
References
Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." Bayesian Analysis. Vol.15, No.1, pp.133-157.