nd_edd function

Edge Difference Distance

Edge Difference Distance

It is of the most simplest form that Edge Difference Distance (EDD) takestwo adjacency matrices and takes Frobenius norm of their differnces.

nd.edd(A, out.dist = TRUE)

Arguments

  • A: a list of length NN containing (M×M)(M\times M) adjacency matrices.
  • out.dist: a logical; TRUE for computed distance matrix as a dist object.

Returns

a named list containing

  • D: an (N×N)(N\times N) matrix or dist object containing pairwise distance measures.

Examples

## load example data data(graph20) ## compute distance matrix output = nd.edd(graph20, out.dist=FALSE) ## visualize opar <- par(no.readonly=TRUE) par(pty="s") image(output$D[,20:1], main="two group case", axes=FALSE, col=gray(0:32/32)) par(opar)

References

Rdpack::insert_ref(key="hammond_graph_2013",package="NetworkDistance")

  • Maintainer: Kisung You
  • License: MIT + file LICENSE
  • Last published: 2021-08-21

Useful links