nd_wsd function

Distance with Weighted Spectral Distribution

Distance with Weighted Spectral Distribution

Normalized Laplacian matrix contains topological information of a corresponding network via its spectrum. nd.wsd adopts weighted spectral distribution of eigenvalues and brings about a metric via binning strategy.

nd.wsd(A, out.dist = TRUE, K = 50, wN = 4)

Arguments

  • A: a list of length NN containing (M×M)(M\times M) adjacency matrices.
  • out.dist: a logical; TRUE for computed distance matrix as a dist object.
  • K: the number of bins for the spectrum interval [0,2].[0,2].
  • wN: a decaying exponent; default is 44 set by authors.

Returns

a named list containing

  • D: an (N×N)(N\times N) matrix or dist object containing pairwise distance measures.
  • spectra: an (N×M)(N\times M) matrix of rows being eigenvalues for each graph.

Examples

## load example data and extract a few data(graph20) gr.small = graph20[c(1:5,11:15)] ## compute distance matrix output = nd.wsd(gr.small, out.dist=FALSE, K=10) ## visualize opar = par(no.readonly=TRUE) par(pty="s") image(output$D[,10:1], main="two group case", axes=FALSE, col=gray(0:32/32)) par(opar)

References

Rdpack::insert_ref(key="fay_weighted_2010",package="NetworkDistance")

  • Maintainer: Kisung You
  • License: MIT + file LICENSE
  • Last published: 2021-08-21

Useful links