PlotSensMLP function

Neural network structure sensitivity plot

Neural network structure sensitivity plot

Plot a neural interpretation diagram colored by sensitivities of the model

PlotSensMLP( MLP.fit, metric = "mean", sens_neg_col = "red", sens_pos_col = "blue", ... )

Arguments

  • MLP.fit: fitted neural network model
  • metric: metric to plot in the NID. It can be "mean" (default), "median or "sqmean". It can be any metric to combine the raw sensitivities
  • sens_neg_col: character string indicating color of negative sensitivity measure, default 'red'. The same is passed to argument neg_col of plotnet
  • sens_pos_col: character string indicating color of positive sensitivity measure, default 'blue'. The same is passed to argument pos_col of plotnet
  • ...: additional arguments passed to plotnet and/or SensAnalysisMLP

Returns

A graphics object

Examples

## Load data ------------------------------------------------------------------- data("DAILY_DEMAND_TR") fdata <- DAILY_DEMAND_TR ## Parameters of the NNET ------------------------------------------------------ hidden_neurons <- 5 iters <- 100 decay <- 0.1 ################################################################################ ######################### REGRESSION NNET ##################################### ################################################################################ ## Regression dataframe -------------------------------------------------------- # Scale the data fdata.Reg.tr <- fdata[,2:ncol(fdata)] fdata.Reg.tr[,3] <- fdata.Reg.tr[,3]/10 fdata.Reg.tr[,1] <- fdata.Reg.tr[,1]/1000 # Normalize the data for some models preProc <- caret::preProcess(fdata.Reg.tr, method = c("center","scale")) nntrData <- predict(preProc, fdata.Reg.tr) #' ## TRAIN nnet NNET -------------------------------------------------------- # Create a formula to train NNET form <- paste(names(fdata.Reg.tr)[2:ncol(fdata.Reg.tr)], collapse = " + ") form <- formula(paste(names(fdata.Reg.tr)[1], form, sep = " ~ ")) set.seed(150) nnetmod <- nnet::nnet(form, data = nntrData, linear.output = TRUE, size = hidden_neurons, decay = decay, maxit = iters) # Try SensAnalysisMLP NeuralSens::PlotSensMLP(nnetmod, trData = nntrData)
  • Maintainer: Jaime Pizarroso Gonzalo
  • License: GPL (>= 2)
  • Last published: 2024-05-11