Plot method for the HessMLP Class
Plot the sensitivities and sensitivity metrics of a HessMLP
object.
## S3 method for class 'HessMLP' plot( x, plotType = c("sensitivities", "time", "features", "matrix", "interactions"), ... )
x
: HessMLP
object created by HessianMLP
plotType
: character
specifying which type of plot should be created. It can be:
HessianMLP
functionSensTimePlot
functionHessFeaturePlot
functionSensMatPlot
function to show the values of second partial derivativesSensMatPlot
function to show the values of second partial derivatives and the first partial derivatives in the diagonal...
: additional parameters passed to plot function of the NeuralSens
package
list of graphic objects created by ggplot
#' ## Load data ------------------------------------------------------------------- data("DAILY_DEMAND_TR") fdata <- DAILY_DEMAND_TR ## Parameters of the NNET ------------------------------------------------------ hidden_neurons <- 5 iters <- 250 decay <- 0.1 ################################################################################ ######################### REGRESSION NNET ##################################### ################################################################################ ## Regression dataframe -------------------------------------------------------- # Scale the data fdata.Reg.tr <- fdata[,2:ncol(fdata)] fdata.Reg.tr[,3] <- fdata.Reg.tr[,3]/10 fdata.Reg.tr[,1] <- fdata.Reg.tr[,1]/1000 # Normalize the data for some models preProc <- caret::preProcess(fdata.Reg.tr, method = c("center","scale")) nntrData <- predict(preProc, fdata.Reg.tr) #' ## TRAIN nnet NNET -------------------------------------------------------- # Create a formula to train NNET form <- paste(names(fdata.Reg.tr)[2:ncol(fdata.Reg.tr)], collapse = " + ") form <- formula(paste(names(fdata.Reg.tr)[1], form, sep = " ~ ")) set.seed(150) nnetmod <- nnet::nnet(form, data = nntrData, linear.output = TRUE, size = hidden_neurons, decay = decay, maxit = iters) # Try HessianMLP sens <- NeuralSens::HessianMLP(nnetmod, trData = nntrData, plot = FALSE) plot(sens) plot(sens,"time")