Print the sensitivity metrics of a HessMLP object. This metrics are the mean sensitivity, the standard deviation of sensitivities and the mean of sensitivities square
## S3 method for class 'summary.HessMLP'print(x, round_digits =NULL,...)
Arguments
x: summary.HessMLP object created by summary method of HessMLP object
round_digits: integer number of decimal places, default NULL
...: additional parameters
Examples
## Load data -------------------------------------------------------------------data("DAILY_DEMAND_TR")fdata <- DAILY_DEMAND_TR
## Parameters of the NNET ------------------------------------------------------hidden_neurons <-5iters <-250decay <-0.1######################################################################################################### REGRESSION NNET ####################################################################################################################### Regression dataframe --------------------------------------------------------# Scale the datafdata.Reg.tr <- fdata[,2:ncol(fdata)]fdata.Reg.tr[,3]<- fdata.Reg.tr[,3]/10fdata.Reg.tr[,1]<- fdata.Reg.tr[,1]/1000# Normalize the data for some modelspreProc <- caret::preProcess(fdata.Reg.tr, method = c("center","scale"))nntrData <- predict(preProc, fdata.Reg.tr)#' ## TRAIN nnet NNET --------------------------------------------------------# Create a formula to train NNETform <- paste(names(fdata.Reg.tr)[2:ncol(fdata.Reg.tr)], collapse =" + ")form <- formula(paste(names(fdata.Reg.tr)[1], form, sep =" ~ "))set.seed(150)nnetmod <- nnet::nnet(form, data = nntrData, linear.output =TRUE, size = hidden_neurons, decay = decay, maxit = iters)# Try HessianMLPsens <- NeuralSens::HessianMLP(nnetmod, trData = nntrData, plot =FALSE)print(summary(sens))