print.summary.SensMLP function

Print method of the summary SensMLP Class

Print method of the summary SensMLP Class

Print the sensitivity metrics of a SensMLP object. This metrics are the mean sensitivity, the standard deviation of sensitivities and the mean of sensitivities square

## S3 method for class 'summary.SensMLP' print(x, round_digits = NULL, boot.alpha = NULL, ...)

Arguments

  • x: summary.SensMLP object created by summary method of SensMLP object
  • round_digits: integer number of decimal places, default NULL
  • boot.alpha: float significance level to show statistical metrics. If NULL, boot.alpha inherits from x is used. Defaults to NULL.
  • ...: additional parameters

Examples

## Load data ------------------------------------------------------------------- data("DAILY_DEMAND_TR") fdata <- DAILY_DEMAND_TR ## Parameters of the NNET ------------------------------------------------------ hidden_neurons <- 5 iters <- 250 decay <- 0.1 ################################################################################ ######################### REGRESSION NNET ##################################### ################################################################################ ## Regression dataframe -------------------------------------------------------- # Scale the data fdata.Reg.tr <- fdata[,2:ncol(fdata)] fdata.Reg.tr[,3] <- fdata.Reg.tr[,3]/10 fdata.Reg.tr[,1] <- fdata.Reg.tr[,1]/1000 # Normalize the data for some models preProc <- caret::preProcess(fdata.Reg.tr, method = c("center","scale")) nntrData <- predict(preProc, fdata.Reg.tr) #' ## TRAIN nnet NNET -------------------------------------------------------- # Create a formula to train NNET form <- paste(names(fdata.Reg.tr)[2:ncol(fdata.Reg.tr)], collapse = " + ") form <- formula(paste(names(fdata.Reg.tr)[1], form, sep = " ~ ")) set.seed(150) nnetmod <- nnet::nnet(form, data = nntrData, linear.output = TRUE, size = hidden_neurons, decay = decay, maxit = iters) # Try SensAnalysisMLP sens <- NeuralSens::SensAnalysisMLP(nnetmod, trData = nntrData, plot = FALSE) print(summary(sens))

References

Pizarroso J, Portela J, Muñoz A (2022). NeuralSens: Sensitivity Analysis of Neural Networks. Journal of Statistical Software, 102(7), 1-36.

  • Maintainer: Jaime Pizarroso Gonzalo
  • License: GPL (>= 2)
  • Last published: 2024-05-11