Printing Objective Posterior Probabilities from Bayesian Design
Printing Objective Posterior Probabilities from Bayesian Design
Printing method for lists of class OBsProb. It prints the posterior probabilities of factors and models from the Objective Bayesian procedure.
## S3 method for class 'OBsProb'print(x, X =TRUE, resp =TRUE, factors =TRUE, models =TRUE, nTop, digits =3, plt =FALSE, verbose =FALSE, Sh=TRUE, CV=TRUE,...)
Arguments
x: list. Object of OBsProb class, output from the OBsProb function.
X: logical. If TRUE, the design matrix is printed.
resp: logical. If TRUE, the response vector is printed.
factors: logical. If TRUE, marginal posterior probabilities are printed .
models: logical. If TRUE, models posterior probabilities are printed.
nTop: integer. Number of the top ranked models to print.
digits: integer. Significant digits to use for printing.
plt: logical. If TRUE, factor marginal probabilities are plotted.
verbose: logical. If TRUE, the unclass-ed list x is displayed.
Sh: logical. If TRUE, the Shannon index is printed.
CV: logical. If TRUE, the coefficient of variation is printed.
...: additional arguments passed to print function.
Returns
The function prints out marginal factors and models posterior probabilities. Returns invisible list with the components: - calc: numeric vector with general calculation information.
probabilities: Data frame with the marginal posterior factor probabilities.
models: Data frame with model posterior probabilities.
Sh: Normalized Shannon heterogeneity index on the posterior probabilities of models
CV: Coefficient of variation of factor posterior probabilities.
References
Box, G. E. P. and Meyer R. D. (1986) An Analysis of Unreplicated Fractional Factorials., Technometrics 28 (1), 11--18. tools:::Rd_expr_doi("10.1080/00401706.1986.10488093") .
Box, G. E. P. and Meyer, R. D. (1993) Finding the Active Factors in Fractionated Screening Experiments., Journal of Quality Technology 25 (2), 94--105. tools:::Rd_expr_doi("10.1080/00224065.1993.11979432") .
Author(s)
Marta Nai Ruscone.
See Also
OBsProb, summary.OBsProb, plot.OBsProb.
Examples
library(OBsMD)data(OBsMD.es5, package="OBsMD")X <- as.matrix(OBsMD.es5[,1:5])y <- OBsMD.es5[,6]# Using for model prior probability a Beta with parameters a=1 b=1es5.OBsProb <- OBsProb(X=X,y=y, abeta=1, bbeta=1, blk=0,mFac=5,mInt=2,nTop=32)print(es5.OBsProb)summary(es5.OBsProb)plot(es5.OBsProb)