Summary of Posterior Probabilities from Objective Bayesian Design
Summary of Posterior Probabilities from Objective Bayesian Design
Reduced printing method for class OBsProb lists. Prints posterior probabilities of factors and models from Objective Bayesian procedure.
## S3 method for class 'OBsProb'summary(object, nTop =10, digits =3,...)
Arguments
object: list. OBsProb class list. Output list of OBsProb function.
nTop: integer. Number of the top ranked models to print.
digits: integer. Significant digits to use.
...: additional arguments passed to summary generic function. ## Returns
The function prints out the marginal factors and models posterior probabilities. Returns invisible list with the components: - calc: Numeric vector with basic calculation information.
probabilities: Data frame with the marginal posterior probabilities.
models: Data frame with the models posterior probabilities.
References
Box, G. E. P. and Meyer R. D. (1986) An Analysis of Unreplicated Fractional Factorials., Technometrics 28 (1), 11--18. tools:::Rd_expr_doi("10.1080/00401706.1986.10488093") .
Box, G. E. P. and Meyer, R. D. (1993) Finding the Active Factors in Fractionated Screening Experiments., Journal of Quality Technology 25 (2), 94--105. tools:::Rd_expr_doi("10.1080/00224065.1993.11979432") .
Consonni, G. and Deldossi, L. (2016) Objective Bayesian Model Discrimination in Follow-up design., Test 25 (3), 397--412. tools:::Rd_expr_doi("10.1007/s11749-015-0461-3") .
Author(s)
Marta Nai Ruscone.
See Also
OBsProb, print.OBsProb, plot.OBsProb.
Examples
library(OBsMD)data(OBsMD.es5, package="OBsMD")X <- as.matrix(OBsMD.es5[,1:5])y <- OBsMD.es5[,6]# Using for model prior probability a Beta with parameters a=1 b=1es5.OBsProb <- OBsProb(X=X,y=y, abeta=1, bbeta=1, blk=0,mFac=5,mInt=2,nTop=32)print(es5.OBsProb)summary(es5.OBsProb)