MTest function

Extended One-Sided Studentised Range Test

Extended One-Sided Studentised Range Test

Performs Nashimoto-Wright's extended one-sided studentised range test against an ordered alternative for normal data with equal variances.

MTest(x, ...) ## Default S3 method: MTest(x, g, alternative = c("greater", "less"), ...) ## S3 method for class 'formula' MTest( formula, data, subset, na.action, alternative = c("greater", "less"), ... ) ## S3 method for class 'aov' MTest(x, alternative = c("greater", "less"), ...)

Arguments

  • x: a numeric vector of data values, or a list of numeric data vectors.
  • ...: further arguments to be passed to or from methods.
  • g: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
  • alternative: the alternative hypothesis. Defaults to greater.
  • formula: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
  • data: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
  • subset: an optional vector specifying a subset of observations to be used.
  • na.action: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Returns

  • method: a character string indicating what type of test was performed.
  • data.name: a character string giving the name(s) of the data.
  • statistic: the estimated statistic(s)
  • crit.value: critical values for α=0.05\alpha = 0.05.
  • alternative: a character string describing the alternative hypothesis.
  • parameter: the parameter(s) of the test distribution.
  • dist: a string that denotes the test distribution.

There are print and summary methods available.

Details

The procedure uses the property of a simple order, c("thetammumlemujmuilemulmul\n\\theta_m' - \\mu_m \\le \\mu_j - \\mu_i \\le \\mu_l' - \\mu_l\n", "qquad(lleilem mathrmand mlejlel)\\qquad (l \\le i \\le m~\\mathrm{and}~ m' \\le j \\le l')"). The null hypothesis Hij:μi=μj_{ij}: \mu_i = \mu_j is tested against the alternative Aij:μi<μj_{ij}: \mu_i < \mu_j for any 1i<jk1 \le i < j \le k.

The all-pairs comparisons test statistics for a balanced design are

h^ij=maxim<mj(xˉmxˉm)sin/n, \hat{h}_{ij} = \max_{i \le m < m' \le j} \frac{\left(\bar{x}_{m'} - \bar{x}_m \right)}{s_{\mathrm{in}} / \sqrt{n}},%SEE PDF

with n=ni; N=ikni  (1ik)n = n_i; ~ N = \sum_i^k n_i ~~ (1 \le i \le k), xˉi\bar{x}_i the arithmetic mean of the iith group, and sin2s_{\mathrm{in}}^2 the within ANOVA variance. The null hypothesis is rejected, if h^>hk,α,v\hat{h} > h_{k,\alpha,v}, with v=Nkv = N - k

degree of freedom.

For the unbalanced case with moderate imbalance the test statistic is

h^ij=maxim<mj(xˉmxˉm)sin(1/nm+1/nm)1/2, \hat{h}_{ij} = \max_{i \le m < m' \le j} \frac{\left(\bar{x}_{m'} - \bar{x}_m \right)}{s_{\mathrm{in}} \left(1/n_m + 1/n_{m'}\right)^{1/2}},%SEE PDF

The null hypothesis is rejected, if h^ij>hk,α,v/2\hat{h}_{ij} > h_{k,\alpha,v} / \sqrt{2}.

The function does not return p-values. Instead the critical h-values as given in the tables of Hayter (1990) for α=0.05\alpha = 0.05 (one-sided) are looked up according to the number of groups (kk) and the degree of freedoms (vv).

Note

The function will give a warning for the unbalanced case and returns the critical value hk,α,/2h_{k,\alpha,\infty} / \sqrt{2}.

Examples

## md <- aov(weight ~ group, PlantGrowth) anova(md) osrtTest(md) MTest(md)

References

Hayter, A. J.(1990) A One-Sided Studentised Range Test for Testing Against a Simple Ordered Alternative, Journal of the American Statistical Association

85 , 778--785.

Nashimoto, K., Wright, F.T., (2005) Multiple comparison procedures for detecting differences in simply ordered means. Comput. Statist. Data Anal. 48 , 291--306.

See Also

osrtTest, NPMTest

  • Maintainer: Thorsten Pohlert
  • License: GPL (>= 3)
  • Last published: 2024-09-08

Useful links