NPMTest function

All-Pairs Comparisons for Simply Ordered Mean Ranksums

All-Pairs Comparisons for Simply Ordered Mean Ranksums

Performs Nashimoto and Wright's all-pairs comparison procedure for simply ordered mean ranksums.

Source

If method = "asympt" is selected, this function calls an internal probability function pHS. The GPL-2 code for this function was taken from pHayStonLSA of the the package NSM3:

Grant Schneider, Eric Chicken and Rachel Becvarik (2020) NSM3: Functions and Datasets to Accompany Hollander, Wolfe, and Chicken - Nonparametric Statistical Methods, Third Edition. R package version 1.15. https://CRAN.R-project.org/package=NSM3

NPMTest(x, ...) ## Default S3 method: NPMTest( x, g, alternative = c("greater", "less"), method = c("look-up", "boot", "asympt"), nperm = 10000, ... ) ## S3 method for class 'formula' NPMTest( formula, data, subset, na.action, alternative = c("greater", "less"), method = c("look-up", "boot", "asympt"), nperm = 10000, ... )

Arguments

  • x: a numeric vector of data values, or a list of numeric data vectors.
  • ...: further arguments to be passed to or from methods.
  • g: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
  • alternative: the alternative hypothesis. Defaults to greater.
  • method: a character string specifying the test statistic to use. Defaults to "look-up" that uses published Table values of Williams (1972).
  • nperm: number of permutations for the asymptotic permutation test. Defaults to 1000. Ignored, if method = "look-up".
  • formula: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
  • data: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
  • subset: an optional vector specifying a subset of observations to be used.
  • na.action: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Returns

  • method: a character string indicating what type of test was performed.
  • data.name: a character string giving the name(s) of the data.
  • statistic: the estimated statistic(s)
  • crit.value: critical values for α=0.05\alpha = 0.05.
  • alternative: a character string describing the alternative hypothesis.
  • parameter: the parameter(s) of the test distribution.
  • dist: a string that denotes the test distribution.

There are print and summary methods available.

Either a list of class "PMCMR" or a list with class "osrt" that contains the following components:

  • method: a character string indicating what type of test was performed.
  • data.name: a character string giving the name(s) of the data.
  • statistic: the estimated statistic(s)
  • crit.value: critical values for α=0.05\alpha = 0.05.
  • alternative: a character string describing the alternative hypothesis.
  • parameter: the parameter(s) of the test distribution.
  • dist: a string that denotes the test distribution.

There are print and summary methods available.

A list with class "PMCMR" containing the following components:

  • method: a character string indicating what type of test was performed.
  • data.name: a character string giving the name(s) of the data.
  • statistic: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
  • p.value: lower-triangle matrix of the p-values for the pairwise tests.
  • alternative: a character string describing the alternative hypothesis.
  • p.adjust.method: a character string describing the method for p-value adjustment.
  • model: a data frame of the input data.
  • dist: a string that denotes the test distribution.

Details

The procedure uses the property of a simple order, c("thetamthetamlethetajthetailethetalthetal\n\\theta_m' - \\theta_m \\le \\theta_j - \\theta_i \\le \\theta_l' - \\theta_l\n", "qquad(lleilem mathrmand mlejlel)\\qquad (l \\le i \\le m~\\mathrm{and}~ m' \\le j \\le l')"). The null hypothesis Hij:θi=θj_{ij}: \theta_i = \theta_j is tested against the alternative Aij:θi<θj_{ij}: \theta_i < \theta_j for any 1i<jk1 \le i < j \le k.

The all-pairs comparisons test statistics for a balanced design are

h^ij=maxim<mj(RˉmRˉm)σa/n, \hat{h}_{ij} = \max_{i \le m < m' \le j} \frac{\left(\bar{R}_{m'} - \bar{R}_m \right)}{\sigma_a / \sqrt{n}},%SEE PDF

with n=ni; N=ikni  (1ik)n = n_i; ~ N = \sum_i^k n_i ~~ (1 \le i \le k), Rˉi\bar{R}_i the mean rank for the iith group, and σa=N(N+1)/12\sigma_a = \sqrt{N \left(N + 1 \right) / 12}. The null hypothesis is rejected, if hij>hk,α,h_{ij} > h_{k,\alpha,\infty}.

For the unbalanced case with moderate imbalance the test statistic is

h^ij=maxim<mj(RˉmRˉm)σa(1/nm+1/nm)1/2, \hat{h}_{ij} = \max_{i \le m < m' \le j} \frac{\left(\bar{R}_{m'} - \bar{R}_m \right)}{\sigma_a \left(1/n_m + 1/n_{m'}\right)^{1/2}},%SEE PDF

The null hypothesis is rejected, if h^ij>hk,α,/2\hat{h}_{ij} > h_{k,\alpha,\infty} / \sqrt{2}.

If method = "look-up" the function will not return p-values. Instead the critical h-values as given in the tables of Hayter (1990) for α=0.05\alpha = 0.05 (one-sided) are looked up according to the number of groups (kk) and the degree of freedoms (v=v = \infty).

If method = "boot" an asymetric permutation test is conducted and pp-values is returned.

If method = "asympt" is selected the asymptotic pp-value is estimated as implemented in the function pHayStonLSA of the package NSM3.

Note

The function will give a warning for the unbalanced case and returns the critical value hk,α,/2h_{k,\alpha,\infty} / \sqrt{2}.

Examples

## Example from Shirley (1977) ## Reaction times of mice to stimuli to their tails. x <- c(2.4, 3, 3, 2.2, 2.2, 2.2, 2.2, 2.8, 2, 3, 2.8, 2.2, 3.8, 9.4, 8.4, 3, 3.2, 4.4, 3.2, 7.4, 9.8, 3.2, 5.8, 7.8, 2.6, 2.2, 6.2, 9.4, 7.8, 3.4, 7, 9.8, 9.4, 8.8, 8.8, 3.4, 9, 8.4, 2.4, 7.8) g <- gl(4, 10) ## Shirley's test ## one-sided test using look-up table shirleyWilliamsTest(x ~ g, alternative = "greater") ## Chacko's global hypothesis test for 'greater' chackoTest(x , g) ## post-hoc test, default is standard normal distribution (NPT'-test) summary(chaAllPairsNashimotoTest(x, g, p.adjust.method = "none")) ## same but h-distribution (NPY'-test) chaAllPairsNashimotoTest(x, g, dist = "h") ## NPM-test NPMTest(x, g) ## Hayter-Stone test hayterStoneTest(x, g) ## all-pairs comparisons hsAllPairsTest(x, g)

References

Hayter, A. J.(1990) A One-Sided Studentised Range Test for Testing Against a Simple Ordered Alternative, Journal of the American Statistical Association

85 , 778--785.

Nashimoto, K., Wright, F.T. (2007) Nonparametric Multiple-Comparison Methods for Simply Ordered Medians. Comput Stat Data Anal 51 , 5068–5076.

See Also

MTest

  • Maintainer: Thorsten Pohlert
  • License: GPL (>= 3)
  • Last published: 2024-09-08

Useful links