adKSampleTest(x,...)## Default S3 method:adKSampleTest(x, g,...)## S3 method for class 'formula'adKSampleTest(formula, data, subset, na.action,...)
Arguments
x: a numeric vector of data values, or a list of numeric data vectors.
...: further arguments to be passed to or from methods.
g: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset: an optional vector specifying a subset of observations to be used.
na.action: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
Returns
A list with class "htest" containing the following components:
method: a character string indicating what type of test was performed.
data.name: a character string giving the name(s) of the data.
statistic: the estimated quantile of the test statistic.
p.value: the p-value for the test.
parameter: the parameters of the test statistic, if any.
alternative: a character string describing the alternative hypothesis.
estimates: the estimates, if any.
null.value: the estimate under the null hypothesis, if any.
Details
The null hypothesis, H0:F1=F2=…=Fk
is tested against the alternative, HA:Fi=Fj(i=j), with at least one unequality beeing strict.
This function only evaluates version 1 of the k-sample Anderson-Darling test (i.e. Eq. 6) of Scholz and Stephens (1987). The p-values are estimated with the extended empirical function as implemented in ad.pval of the package kSamples.
Examples
## Hollander & Wolfe (1973), 116.## Mucociliary efficiency from the rate of removal of dust in normal## subjects, subjects with obstructive airway disease, and subjects## with asbestosis.x <- c(2.9,3.0,2.5,2.6,3.2)# normal subjectsy <- c(3.8,2.7,4.0,2.4)# with obstructive airway diseasez <- c(2.8,3.4,3.7,2.2,2.0)# with asbestosisg <- factor(x = c(rep(1, length(x)), rep(2, length(y)), rep(3, length(z))), labels = c("ns","oad","a"))dat <- data.frame( g = g, x = c(x, y, z))## AD-TestadKSampleTest(x ~ g, data = dat)## BWS-TestbwsKSampleTest(x ~ g, data = dat)## Kruskal-Test## Using incomplete beta approximationkruskalTest(x ~ g, dat, dist="KruskalWallis")## Using chisquare distributionkruskalTest(x ~ g, dat, dist="Chisquare")## Not run:## Check with kruskal.test from R statskruskal.test(x ~ g, dat)## End(Not run)## Using Conover's FkruskalTest(x ~ g, dat, dist="FDist")## Not run:## Check with aov on ranksanova(aov(rank(x)~ g, dat))## Check with oneway.testoneway.test(rank(x)~ g, dat, var.equal =TRUE)## End(Not run)## Median Test asymptoticmedianTest(x ~ g, dat)## Median Test with simulated p-valuesset.seed(112)medianTest(x ~ g, dat, simulate.p.value =TRUE)
References
Scholz, F.W., Stephens, M.A. (1987) K-Sample Anderson-Darling Tests. Journal of the American Statistical Association 82 , 918--924.