cochranTest function

Cochran Test

Cochran Test

Performs Cochran's test for testing an outlying (or inlying) variance.

cochranTest(x, ...) ## Default S3 method: cochranTest(x, g, alternative = c("greater", "less"), ...) ## S3 method for class 'formula' cochranTest( formula, data, subset, na.action, alternative = c("greater", "less"), ... )

Arguments

  • x: a numeric vector of data values, or a list of numeric data vectors.
  • ...: further arguments to be passed to or from methods.
  • g: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
  • alternative: the alternative hypothesis. Defaults to "greater"
  • formula: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
  • data: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
  • subset: an optional vector specifying a subset of observations to be used.
  • na.action: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Returns

A list with class "htest" containing the following components:

  • method: a character string indicating what type of test was performed.
  • data.name: a character string giving the name(s) of the data.
  • statistic: the estimated quantile of the test statistic.
  • p.value: the p-value for the test.
  • parameter: the parameters of the test statistic, if any.
  • alternative: a character string describing the alternative hypothesis.
  • estimates: the estimates, if any.
  • null.value: the estimate under the null hypothesis, if any.

Details

For normally distributed data the null hypothesis, H0:σ12=σ22==σk2_0: \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_k^2

is tested against the alternative (greater) HA:σp>σi  (ik,ip)_{\mathrm{A}}: \sigma_p > \sigma_i ~~ (i \le k, i \ne p) with at least one inequality being strict.

The p-value is computed with the function pcochran.

Examples

data(Pentosan) cochranTest(value ~ lab, data = Pentosan, subset = (material == "A"))

References

Cochran, W.G. (1941) The distribution of the largest of a set of estimated variances as a fraction of their total. Ann. Eugen. 11 , 47--52.

Wilrich, P.-T. (2011) Critical values of Mandel's h and k, Grubbs and the Cochran test statistic. Adv. Stat. Anal.. tools:::Rd_expr_doi("10.1007/s10182-011-0185-y") .

See Also

bartlett.test, fligner.test.

  • Maintainer: Thorsten Pohlert
  • License: GPL (>= 3)
  • Last published: 2024-09-08

Useful links