doubleGrubbsTest function

Grubbs Double Outlier Test

Grubbs Double Outlier Test

Performs Grubbs double outlier test.

doubleGrubbsTest(x, alternative = c("two.sided", "greater", "less"), m = 10000)

Arguments

  • x: a numeric vector of data.
  • alternative: the alternative hypothesis. Defaults to "two.sided".
  • m: number of Monte-Carlo replicates.

Returns

A list with class "htest" containing the following components:

  • method: a character string indicating what type of test was performed.
  • data.name: a character string giving the name(s) of the data.
  • statistic: the estimated quantile of the test statistic.
  • p.value: the p-value for the test.
  • parameter: the parameters of the test statistic, if any.
  • alternative: a character string describing the alternative hypothesis.
  • estimates: the estimates, if any.
  • null.value: the estimate under the null hypothesis, if any.

Details

Let XX denote an identically and independently distributed continuous variate with realizations xi  (1ik)x_i ~~ (1 \le i \le k). Further, let the increasingly ordered realizations denote x(1)x(2)x(n)x_{(1)} \le x_{(2)} \le \ldots \le x_{(n)}. Then the following model for testing two maximum outliers can be proposed:

x(i)={μ+ϵ(i),i=1,,n2μ+Δ+ϵ(j)j=n1,n x_{(i)} = \left\{\begin{array}{lcl}\mu + \epsilon_{(i)}, & \qquad & i = 1, \ldots, n - 2 \\\mu + \Delta + \epsilon_{(j)} & \qquad & j = n-1, n \\\end{array} \right.%x[(i)] = \mu + \epsilon[(i)] for i = 1, ..., n - 2and x[(i)] = \mu + \Delta + \epsilon[(j)] for j = n-1, n

with ϵN(0,σ)\epsilon \approx N(0,\sigma). The null hypothesis, H0:Δ=0_0: \Delta = 0 is tested against the alternative, HA:Δ>0_{\mathrm{A}}: \Delta > 0.

For testing two minimum outliers, the model can be proposed as

x(i)={μ+Δ+ϵ(j)j=1,2μ+ϵ(i),i=3,,n x_{(i)} = \left\{\begin{array}{lcl}\mu + \Delta + \epsilon_{(j)} & \qquad & j = 1, 2 \\\mu + \epsilon_{(i)}, & \qquad & i = 3, \ldots, n \\\end{array} \right.%x[(i)] = \mu + \Delta + \epsilon[(j)] for j = 1, 2and x[(i)] = \mu + \epsilon[(i)] for i = 3, ..., n

The null hypothesis is tested against the alternative, HA:Δ<0_{\mathrm{A}}: \Delta < 0.

The p-value is computed with the function pdgrubbs.

Examples

data(Pentosan) dat <- subset(Pentosan, subset = (material == "A")) labMeans <- tapply(dat$value, dat$lab, mean) doubleGrubbsTest(x = labMeans, alternative = "less")

References

Grubbs, F. E. (1950) Sample criteria for testing outlying observations. Ann. Math. Stat. 21 , 27--58.

Wilrich, P.-T. (2011) Critical values of Mandel's h and k, Grubbs and the Cochran test statistic. Adv. Stat. Anal.. tools:::Rd_expr_doi("10.1007/s10182-011-0185-y") .

  • Maintainer: Thorsten Pohlert
  • License: GPL (>= 3)
  • Last published: 2024-09-08

Useful links