dunnettT3Test function

Dunnett's T3 Test

Dunnett's T3 Test

Performs Dunnett's all-pairs comparison test for normally distributed data with unequal variances.

dunnettT3Test(x, ...) ## Default S3 method: dunnettT3Test(x, g, ...) ## S3 method for class 'formula' dunnettT3Test(formula, data, subset, na.action, ...) ## S3 method for class 'aov' dunnettT3Test(x, ...)

Arguments

  • x: a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an aov fit.
  • ...: further arguments to be passed to or from methods.
  • g: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
  • formula: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
  • data: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
  • subset: an optional vector specifying a subset of observations to be used.
  • na.action: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Returns

A list with class "PMCMR" containing the following components:

  • method: a character string indicating what type of test was performed.
  • data.name: a character string giving the name(s) of the data.
  • statistic: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
  • p.value: lower-triangle matrix of the p-values for the pairwise tests.
  • alternative: a character string describing the alternative hypothesis.
  • p.adjust.method: a character string describing the method for p-value adjustment.
  • model: a data frame of the input data.
  • dist: a string that denotes the test distribution.

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal groups variances the T3 test of Dunnett can be performed. Let XijX_{ij} denote a continuous random variable with the jj-the realization (1jni1 \le j \le n_i) in the ii-th group (1ik1 \le i \le k). Furthermore, the total sample size is N=i=1kniN = \sum_{i=1}^k n_i. A total of m=k(k1)/2m = k(k-1)/2

hypotheses can be tested: The null hypothesis is Hij:μi=μj  (ij)_{ij}: \mu_i = \mu_j ~~ (i \ne j) is tested against the alternative Aij:μiμj_{ij}: \mu_i \ne \mu_j (two-tailed). Dunnett T3 all-pairs test statistics are given by

tijXˉiXjˉ(sj2/nj+si2/ni)1/2,  (ij) t_{ij} \frac{\bar{X}_i - \bar{X_j}}{\left( s^2_j / n_j + s^2_i / n_i \right)^{1/2}}, ~~(i \ne j)%SEE PDF

with si2s^2_i the variance of the ii-th group. The null hypothesis is rejected (two-tailed) if

Pr{tijTvijρijα/2H}ij=α, \mathrm{Pr} \left\{ |t_{ij}| \ge T_{v_{ij}\rho_{ij}\alpha'/2} | \mathrm{H} \right\}_{ij} =\alpha,%SEE PDF

with Welch's approximate solution for calculating the degree of freedom.

vij=(si2/ni+sj2/nj)2si4/ni2(ni1)+sj4/nj2(nj1). v_{ij} = \frac{\left( s^2_i / n_i + s^2_j / n_j \right)^2}{s^4_i / n^2_i \left(n_i - 1\right) + s^4_j / n^2_j \left(n_j - 1\right)}.%SEE PDF

The pp-values are computed from the studentized maximum modulus distribution that is the equivalent of the multivariate t distribution with ρii=1, ρij=0 (ij)\rho_{ii} = 1, ~ \rho_{ij} = 0 ~ (i \ne j). The function pmvt is used to calculate the pp-values.

Examples

fit <- aov(weight ~ feed, chickwts) shapiro.test(residuals(fit)) bartlett.test(weight ~ feed, chickwts) anova(fit) ## also works with fitted objects of class aov res <- dunnettT3Test(fit) summary(res) summaryGroup(res)

References

C. W. Dunnett (1980) Pair wise multiple comparisons in the unequal variance case, Journal of the American Statistical Association 75 , 796--800.

See Also

pmvt

  • Maintainer: Thorsten Pohlert
  • License: GPL (>= 3)
  • Last published: 2024-09-08

Useful links