y: a numeric vector of data values, or a list of numeric data vectors.
groups: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
blocks: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
``: further arguments to be passed to or from methods.
Returns
A list with class "PMCMR" containing the following components:
method: a character string indicating what type of test was performed.
data.name: a character string giving the name(s) of the data.
statistic: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value: lower-triangle matrix of the p-values for the pairwise tests.
alternative: a character string describing the alternative hypothesis.
p.adjust.method: a character string describing the method for p-value adjustment.
model: a data frame of the input data.
dist: a string that denotes the test distribution.
Details
For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Miller's test can be performed on Friedman-type ranked data.
A total of m=k(k−1)/2 hypotheses can be tested. The null hypothesis, Hij:θi=θj, is tested in the two-tailed case against the alternative, Aij:θi=θj,i=j.
The p-values are computed from the chi-square distribution.
Examples
## Sachs, 1997, p. 675## Six persons (block) received six different diuretics## (A to F, treatment).## The responses are the Na-concentration (mval)## in the urine measured 2 hours after each treatment.## y <- matrix(c(3.88,5.64,5.76,4.25,5.91,4.33,30.58,30.14,16.92,23.19,26.74,10.91,25.24,33.52,25.45,18.85,20.45,26.67,4.44,7.94,4.04,4.4,4.23,4.36,29.41,30.72,32.92,28.23,23.35,12,38.87,33.12,39.15,28.06,38.23,26.65),nrow=6, ncol=6, dimnames=list(1:6, LETTERS[1:6])) print(y) friedmanTest(y)## Eisinga et al. 2017 frdAllPairsExactTest(y=y, p.adjust ="bonferroni")## Conover's test frdAllPairsConoverTest(y=y, p.adjust ="bonferroni")## Nemenyi's test frdAllPairsNemenyiTest(y=y)## Miller et al. frdAllPairsMillerTest(y=y)## Siegel-Castellan frdAllPairsSiegelTest(y=y, p.adjust ="bonferroni")## Irrelevant of group order? x <- as.vector(y) g <- rep(colnames(y), each = length(x)/length(colnames(y))) b <- rep(rownames(y), times = length(x)/length(rownames(y))) xDF <- data.frame(x, g, b)# grouped by colnames frdAllPairsNemenyiTest(xDF$x, groups = xDF$g, blocks = xDF$b) o <- order(xDF$b)# order per block increasingly frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o]) o <- order(xDF$x)# order per value increasingly frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])## formula method (only works for Nemenyi) frdAllPairsNemenyiTest(x ~ g | b, data = xDF)
References
Bortz J., Lienert, G. A., Boehnke, K. (1990) Verteilungsfreie Methoden in der Biostatistik. Berlin: Springer.
Miller Jr., R. G. (1996) Simultaneous statistical inference. New York: McGraw-Hill.
Wike, E. L. (2006), Data Analysis. A Statistical Primer for Psychology Students. New Brunswick: Aldine Transaction.