johnsonTest function

Testing against Ordered Alternatives (Johnson-Mehrotra Test)

Testing against Ordered Alternatives (Johnson-Mehrotra Test)

Performs the Johnson-Mehrotra test for testing against ordered alternatives in a balanced one-factorial sampling design.

johnsonTest(x, ...) ## Default S3 method: johnsonTest(x, g, alternative = c("two.sided", "greater", "less"), ...) ## S3 method for class 'formula' johnsonTest( formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), ... )

Arguments

  • x: a numeric vector of data values, or a list of numeric data vectors.
  • ...: further arguments to be passed to or from methods.
  • g: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
  • alternative: the alternative hypothesis. Defaults to "two.sided".
  • formula: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
  • data: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
  • subset: an optional vector specifying a subset of observations to be used.
  • na.action: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Returns

A list with class "htest" containing the following components:

  • method: a character string indicating what type of test was performed.
  • data.name: a character string giving the name(s) of the data.
  • statistic: the estimated quantile of the test statistic.
  • p.value: the p-value for the test.
  • parameter: the parameters of the test statistic, if any.
  • alternative: a character string describing the alternative hypothesis.
  • estimates: the estimates, if any.
  • null.value: the estimate under the null hypothesis, if any.

Details

The null hypothesis, H0:θ1=θ2==θk_0: \theta_1 = \theta_2 = \ldots = \theta_k

is tested against a simple order hypothesis, Hc("_\\mathrm{A}: \\theta_1 \\le \\theta_2 \\le \\ldots \\le\n", "thetak, theta1<thetak\\theta_k,~\\theta_1 < \\theta_k").

The p-values are estimated from the standard normal distribution.

Note

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers {0, 1, 2, ..., k} or letters {a, b, c, ...}. Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see order, factor).

Examples

## Example from Sachs (1997, p. 402) x <- c(106, 114, 116, 127, 145, 110, 125, 143, 148, 151, 136, 139, 149, 160, 174) g <- gl(3,5) levels(g) <- c("A", "B", "C") ## Chacko's test chackoTest(x, g) ## Cuzick's test cuzickTest(x, g) ## Johnson-Mehrotra test johnsonTest(x, g) ## Jonckheere-Terpstra test jonckheereTest(x, g) ## Le's test leTest(x, g) ## Spearman type test spearmanTest(x, g) ## Murakami's BWS trend test bwsTrendTest(x, g) ## Fligner-Wolfe test flignerWolfeTest(x, g) ## Shan-Young-Kang test shanTest(x, g)

References

Bortz, J. (1993). Statistik für Sozialwissenschaftler (4th ed.). Berlin: Springer.

Johnson, R. A., Mehrotra, K. G. (1972) Some c-sample nonparametric tests for ordered alternatives. Journal of the Indian Statistical Association 9 , 8--23.

See Also

kruskalTest and shirleyWilliamsTest

of the package PMCMRplus, kruskal.test of the library stats.

  • Maintainer: Thorsten Pohlert
  • License: GPL (>= 3)
  • Last published: 2024-09-08

Useful links