Performs Dunn's non-parametric all-pairs comparison test for Kruskal-type ranked data.
kwAllPairsDunnTest(x,...)## Default S3 method:kwAllPairsDunnTest(x, g, p.adjust.method = p.adjust.methods,...)## S3 method for class 'formula'kwAllPairsDunnTest( formula, data, subset, na.action, p.adjust.method = p.adjust.methods,...)
Arguments
x: a numeric vector of data values, or a list of numeric data vectors.
...: further arguments to be passed to or from methods.
g: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
p.adjust.method: method for adjusting p values (see p.adjust).
formula: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset: an optional vector specifying a subset of observations to be used.
na.action: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
Returns
A list with class "PMCMR" containing the following components:
method: a character string indicating what type of test was performed.
data.name: a character string giving the name(s) of the data.
statistic: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value: lower-triangle matrix of the p-values for the pairwise tests.
alternative: a character string describing the alternative hypothesis.
p.adjust.method: a character string describing the method for p-value adjustment.
model: a data frame of the input data.
dist: a string that denotes the test distribution.
Details
For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Dunn's non-parametric test can be performed. A total of m=k(k−1)/2
hypotheses can be tested. The null hypothesis Hij:μi(x)=μj(x) is tested in the two-tailed test against the alternative Aij:μi(x)=μj(x),i=j.
The p-values are computed from the standard normal distribution using any of the p-adjustment methods as included in p.adjust. Originally, Dunn (1964) proposed Bonferroni's p-adjustment method.
Examples
## Data set InsectSprays## Global testkruskalTest(count ~ spray, data = InsectSprays)## Conover's all-pairs comparison test## single-step means Tukey's p-adjustmentans <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays, p.adjust.method ="single-step")summary(ans)## Dunn's all-pairs comparison testans <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays, p.adjust.method ="bonferroni")summary(ans)## Nemenyi's all-pairs comparison testans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)summary(ans)## Brown-Mood all-pairs median testans <- medianAllPairsTest(count ~ spray, data = InsectSprays)summary(ans)
References
Dunn, O. J. (1964) Multiple comparisons using rank sums, Technometrics6, 241--252.
Siegel, S., Castellan Jr., N. J. (1988) Nonparametric Statistics for The Behavioral Sciences. New York: McGraw-Hill.