kwAllPairsDunnTest function

Dunn's All-Pairs Rank Comparison Test

Dunn's All-Pairs Rank Comparison Test

Performs Dunn's non-parametric all-pairs comparison test for Kruskal-type ranked data.

kwAllPairsDunnTest(x, ...) ## Default S3 method: kwAllPairsDunnTest(x, g, p.adjust.method = p.adjust.methods, ...) ## S3 method for class 'formula' kwAllPairsDunnTest( formula, data, subset, na.action, p.adjust.method = p.adjust.methods, ... )

Arguments

  • x: a numeric vector of data values, or a list of numeric data vectors.
  • ...: further arguments to be passed to or from methods.
  • g: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
  • p.adjust.method: method for adjusting p values (see p.adjust).
  • formula: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
  • data: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
  • subset: an optional vector specifying a subset of observations to be used.
  • na.action: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Returns

A list with class "PMCMR" containing the following components:

  • method: a character string indicating what type of test was performed.
  • data.name: a character string giving the name(s) of the data.
  • statistic: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
  • p.value: lower-triangle matrix of the p-values for the pairwise tests.
  • alternative: a character string describing the alternative hypothesis.
  • p.adjust.method: a character string describing the method for p-value adjustment.
  • model: a data frame of the input data.
  • dist: a string that denotes the test distribution.

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Dunn's non-parametric test can be performed. A total of m=k(k1)/2m = k(k-1)/2

hypotheses can be tested. The null hypothesis Hij:μi(x)=μj(x)_{ij}: \mu_i(x) = \mu_j(x) is tested in the two-tailed test against the alternative Aij:μi(x)μj(x),  ij_{ij}: \mu_i(x) \ne \mu_j(x), ~~ i \ne j.

The p-values are computed from the standard normal distribution using any of the p-adjustment methods as included in p.adjust. Originally, Dunn (1964) proposed Bonferroni's p-adjustment method.

Examples

## Data set InsectSprays ## Global test kruskalTest(count ~ spray, data = InsectSprays) ## Conover's all-pairs comparison test ## single-step means Tukey's p-adjustment ans <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays, p.adjust.method = "single-step") summary(ans) ## Dunn's all-pairs comparison test ans <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays, p.adjust.method = "bonferroni") summary(ans) ## Nemenyi's all-pairs comparison test ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays) summary(ans) ## Brown-Mood all-pairs median test ans <- medianAllPairsTest(count ~ spray, data = InsectSprays) summary(ans)

References

Dunn, O. J. (1964) Multiple comparisons using rank sums, Technometrics 6, 241--252.

Siegel, S., Castellan Jr., N. J. (1988) Nonparametric Statistics for The Behavioral Sciences. New York: McGraw-Hill.

See Also

Normal, p.adjust, kruskalTest, kwAllPairsConoverTest, kwAllPairsNemenyiTest

  • Maintainer: Thorsten Pohlert
  • License: GPL (>= 3)
  • Last published: 2024-09-08

Useful links