medianTest(x,...)## Default S3 method:medianTest(x, g, simulate.p.value =FALSE, B =2000,...)## S3 method for class 'formula'medianTest( formula, data, subset, na.action, simulate.p.value =FALSE, B =2000,...)
Arguments
x: a numeric vector of data values, or a list of numeric data vectors.
...: further arguments to be passed to or from methods.
g: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
simulate.p.value: a logical indicating whether to compute p-values by Monte-Carlo simulation.
B: an integer specifying the number of replicates used in the Monte-Carlo test.
formula: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset: an optional vector specifying a subset of observations to be used.
na.action: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
Returns
A list with class htest . For details see chisq.test.
Details
The null hypothesis, Hc("0:theta1=theta2=\n", "ldots=thetak")
is tested against the alternative, HA:θi=θj(i=j), with at least one unequality beeing strict.
Examples
## Hollander & Wolfe (1973), 116.## Mucociliary efficiency from the rate of removal of dust in normal## subjects, subjects with obstructive airway disease, and subjects## with asbestosis.x <- c(2.9,3.0,2.5,2.6,3.2)# normal subjectsy <- c(3.8,2.7,4.0,2.4)# with obstructive airway diseasez <- c(2.8,3.4,3.7,2.2,2.0)# with asbestosisg <- factor(x = c(rep(1, length(x)), rep(2, length(y)), rep(3, length(z))), labels = c("ns","oad","a"))dat <- data.frame( g = g, x = c(x, y, z))## AD-TestadKSampleTest(x ~ g, data = dat)## BWS-TestbwsKSampleTest(x ~ g, data = dat)## Kruskal-Test## Using incomplete beta approximationkruskalTest(x ~ g, dat, dist="KruskalWallis")## Using chisquare distributionkruskalTest(x ~ g, dat, dist="Chisquare")## Not run:## Check with kruskal.test from R statskruskal.test(x ~ g, dat)## End(Not run)## Using Conover's FkruskalTest(x ~ g, dat, dist="FDist")## Not run:## Check with aov on ranksanova(aov(rank(x)~ g, dat))## Check with oneway.testoneway.test(rank(x)~ g, dat, var.equal =TRUE)## End(Not run)## Median Test asymptoticmedianTest(x ~ g, dat)## Median Test with simulated p-valuesset.seed(112)medianTest(x ~ g, dat, simulate.p.value =TRUE)
References
Brown, G.W., Mood, A.M., 1951, On Median Tests for Linear Hypotheses, in: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, pp. 159–167.