powerMCTests function

Power Simulation for One-Factorial All-Pairs and Many-To-One Comparison Tests

Power Simulation for One-Factorial All-Pairs and Many-To-One Comparison Tests

Performs power simulation for one-factorial all-pairs and Many-To-One comparison tests.

powerMCTests( mu, n = 10, errfn = c("Normal", "Lognormal", "Exponential", "Chisquare", "TDist", "Cauchy", "Weibull"), parms = list(mean = 0, sd = 1), test = c("kwManyOneConoverTest", "kwManyOneDunnTest", "kwManyOneNdwTest", "vanWaerdenManyOneTest", "normalScoresManyOneTest", "dunnettTest", "tamhaneDunnettTest", "ManyOneUTest", "chenTest", "kwAllPairsNemenyiTest", "kwAllPairsDunnTest", "kwAllPairsConoverTest", "normalScoresAllPairsTest", "vanWaerdenAllPairsTest", "dscfAllPairsTest", "gamesHowellTest", "lsdTest", "scheffeTest", "tamhaneT2Test", "tukeyTest", "dunnettT3Test", "pairwise.t.test", "pairwise.wilcox.test", "adManyOneTest", "adAllPairsTest", "bwsManyOneTest", "bwsAllPairsTest", "welchManyOneTTest"), alternative = c("two.sided", "greater", "less"), p.adjust.method = c("single-step", p.adjust.methods), alpha = 0.05, FWER = TRUE, replicates = 1000 )

Arguments

  • mu: numeric vector of group means.
  • n: number of replicates per group. If n is a scalar, then a balanced design is assumed. Otherwise, n must be a vector of same length as mu.
  • errfn: the error function. Defaults to "Normal".
  • parms: a list that denotes the arguments for the error function. Defaults to list(mean=0, sd=1).
  • test: the multiple comparison test for which the power analysis is to be performed. Defaults to "kwManyOneConoverTest".
  • alternative: the alternative hypothesis. Defaults to "two.sided", ignored if the selected error function does not use this argument.
  • p.adjust.method: method for adjusting p values (see p.adjust).
  • alpha: the nominal level of Type I Error.
  • FWER: logical, indicates whether the family-wise error should be computed. Defaults to TRUE.
  • replicates: the number of Monte Carlo replicates or runs. Defaults to 1000.

Returns

An object with class powerPMCMR.

Details

The linear model of a one-way ANOVA can be written as:

Xij=μi+ϵij X_{ij} = \mu_i + \epsilon_{ij}

For each Monte Carlo run, the function simulates ϵij\epsilon_{ij} based on the given error function and the corresponding parameters. Then the specified all-pairs or many-to-one comparison test is performed. Finally, several effect sizes (Cohen's f ans R-squared), error rates (per comparison error rate, false discovery rate and familywise error rate) and test powers (any-pair power, average per-pair power and all-pairs power) are calculated.

Examples

## Not run: mu <- c(0, 0, 1, 2) n <- c(5, 4, 5, 5) set.seed(100) powerMCTests(mu, n, errfn="Normal", parms=list(mean=0, sd=1), test="dunnettTest", replicates=1E4) powerMCTests(mu, n, errfn="Normal", parms=list(mean=0, sd=1), test="kwManyOneDunnTest", p.adjust.method = "bonferroni", replicates=1E4) ## End(Not run)
  • Maintainer: Thorsten Pohlert
  • License: GPL (>= 3)
  • Last published: 2024-09-08

Useful links