Implements Gibbs sampling for normal sampling with independent priors on the mean and precision
gibbs_normal(s, P =0.002, iter =1000)
Arguments
s: a list with components y, the observed data, mu0, the prior mean of mu, sigma0, the prior standard deviation of mu, a, the shape parameter of the gamma prior on P, b, the rate parameter of the gamma prior on P
P: starting value of the precision parameter
iter: number of iterations
Returns
matrix of simulated draws of (mu, P) from the algorithm
Author(s)
Jim Albert
Examples
s <- list(y = rnorm(20,5,2), mu0 =10, sigma0 =3, a =1, b =1)out <- gibbs_normal(s, P =0.01, iter=100)