Compound option valuation with Black-Scholes (BS) model
CompoundBS(o = OptPx(Opt(Style = "Compound")), K1 = 10, T1 = 0.5, Type = c("cc", "cp", "pp", "pc"))
o
: = OptPx
objectK1
: The first Strike Price (of the option on the option)T1
: The time of first expiry (of the option on the option)Type
: Possible choices are cc
- call option on call option cp
- call on put pc
- put on call pp
- put on putA list of object 'OptCompound' containing the option parameters binomial tree parameters and compound option parameters
(o <- CompoundBS())$PxBS #price compound option with default parameters o = OptPx(Opt(Style='Compound'), r=0.05, q=0.0, vol=0.25) CompoundBS(o,K1=10,T1=0.5) o = Opt(Style='Compound', S0=50, K=52, ttm=1) CompoundBS(o=OptPx(o, r=.05, q=0, vol=.25),K1=6,T1=1.5) o = Opt(Style='Compound', S0=90, K=100, ttm=1.5) CompoundBS(o=OptPx(o, r=.05, q=0, vol=.25),K1=15,T1=1) o = Opt(Style='Compound', S0=15, K=15, ttm=0.25) CompoundBS(o=OptPx(o, r=.05, q=0, vol=.25),K1=3,T1=1.5)
Robert Abramov