CompoundLT function

Compound option valuation via lattice tree (LT) model

Compound option valuation via lattice tree (LT) model

CompoundLT prices a compound option using the binomial tree (BT) method. The inputs it takes are two OptPx objects. It pulls the S from the o2 input which should be the option with the greater time to maturity.

CompoundLT(o1 = OptPx(Opt(Style = "Compound")), o2 = OptPx(Opt(Style = "Compound")))

Arguments

  • o1: The OptPx object with the shorter time to maturity
  • o2: The OptPx object with the longer time to maturity

Returns

User-supplied o1 option with fields o2 and PxLT, as the second option and calculated price, respectively.

Examples

(o = CompoundLT())$PxLT # Uses default arguments #Put option on a Call: o = Opt(Style="Compound", S0=50, ttm=.5, Right="P", K = 50) o1 = OptPx(o, r = .1, vol = .4, NSteps = 5) o = Opt(Style="Compound", S0=50, ttm=.75, Right="C", K = 60) o2 = OptPx(o, r = .1, vol = .4, NSteps = 5) (o = CompoundLT(o1, o2))$PxLT #Call option on a Call: o = Opt(Style = "Compound", S0 = 50, ttm= .5, Right = "Call", K = 50) o1 = OptPx(o, r = .1, vol = .4, NSteps = 5) o = Opt(Style = "Compound", S0 = 50, ttm= .75, Right = "Call", K = 5) o2 = OptPx(o, r = .1, vol = .4, NSteps = 5) (o = CompoundLT(o1, o2))$PxLT #Put option on a Put: o = Opt(Style = "Compound", S0 = 50, ttm= .5, Right = "Put", K = 40) o1 = OptPx(o, r = .1, vol = .4, NSteps = 5) o = Opt(Style = "Compound", S0 = 50, ttm= .75, Right = "Put", K = 50) o2 = OptPx(o, r = .1, vol = .4, NSteps = 5) (o = CompoundLT(o1, o2))$PxMC #Call option on a Put: o = Opt(Style = "Compound", S0 = 50, ttm= .5, Right = "Call", K = 30) o1 = OptPx(o, r = .1, vol = .4, NSteps = 5) o = Opt(Style = "Compound", S0 = 50, ttm= .75, Right = "Put", K = 80) o2 = OptPx(o, r = .1, vol = .4, NSteps = 5) (o = CompoundLT(o1, o2))$PxLT

Author(s)

Kiryl Novikau, Department of Statistics, Rice University, Spring 2015

References

Hull, John C., Options, Futures and Other Derivatives, 9ed, 2014. Prentice Hall. ISBN 978-0-13-345631-8, http://www-2.rotman.utoronto.ca/~hull/ofod/index.html.