Variance Swap valuation via Black-Scholes (BS) model
VarianceSwapBS(o = OptPx(Opt(Style = "VarianceSwap", Right = "Other", ttm = 0.25, S0 = 1020), r = 0.04, q = 0.01), K = seq(800, 1200, 50), Vol = seq(0.2, 0.24, 0.005), notional = 10^8, varrate = 0.045)
o
: An object of class OptPx
K
: A vector of non-negative strike pricesVol
: a vector of non-negative, less than zero implied volatilities for the associated strikesnotional
: A numeric positive amount to be investedvarrate
: A numeric positive varaince rate to be swappedAn object of class OptPx
with value included
(o = VarianceSwapBS())$PxBS o = Opt(Style="VarianceSwap",Right="Other",ttm=.25,S0=1020) o = OptPx(o,r=.04,q=.01) Vol = Vol=c(.29,.28,.27,.26,.25,.24,.23,.22,.21) (o = VarianceSwapBS(o,K=seq(800,1200,50),Vol=Vol,notional=10^8,varrate=.045))$PxBS o = Opt(Style="VarianceSwap",Right="Other",ttm=.25,S0=1020) o = OptPx(o,r=.04,q=.01) Vol=c(.2,.205,.21,.215,.22,.225,.23,.235,.24) (o =VarianceSwapBS(o,K=seq(800,1200,50),Vol=Vol,notional=10^8,varrate=.045))$PxBS o = Opt(Style="VarianceSwap",Right="Other",ttm=.1,S0=100) o = OptPx(o,r=.03,q=.02) Vol=c(.2,.19,.18,.17,.16,.15,.14,.13,.12) (o =VarianceSwapBS(o,K=seq(80,120,5),Vol=Vol,notional=10^4,varrate=.03))$PxBS
Max Lee, Department of Statistics, Rice University, Spring 2015
Hull, J.C., Options, Futures and Other Derivatives, 9ed, 2014. Prentice Hall. ISBN 978-0-13-345631-8, http://www-2.rotman.utoronto.ca/~hull/ofod.