Compute the robust effect size index estimate from chi-squared statistic.
Compute the robust effect size index estimate from chi-squared statistic.
This function computes the robust effect size index from Vandekar, Tao, & Blume (2020). Vector arguments are accepted. If different length arguments are passed they are dealt with in the usual way of R. For mixed effects models, RESI is conditional on the average correlation structure within subjects.
chisq2S(chisq, df, n)
Arguments
chisq: The chi-square statistic for the parameter of interest.
df: Number of degrees of freedom of the chi-square statistic.
n: Number of independent samples.
Returns
Returns a scalar or vector argument of the robust effect size index estimate.
Details
The formula for converting a Chi-square statistic to RESI is:
S=(max(0,(chisq−df)/n))
Examples
# obtain Chi-sq value by fitting an lm and running a Wald testmod = lm(charges ~ region * age + bmi + sex, data = RESI::insurance)# run a Wald test with robust variancewt = lmtest::waldtest(mod, vcov = sandwich::vcovHC, test ="Chisq")# get Chi-sq value and degrees of freedomchisq = wt$Chisq[2]df = abs(wt$Df[2])# run chisq2S to convert to RESIchisq2S(chisq, df = df, n = nrow(mod$model))