Compute the robust effect size index estimate from F-statistic
Compute the robust effect size index estimate from F-statistic
This function computes the robust effect size index from Vandekar, Tao, & Blume (2020). Vector arguments are accepted. If different length arguments are passed they are dealt with in the usual way of R.
f2S(f, df, rdf, n)
Arguments
f: The F statistic for the parameter of interest.
df: Number of degrees of freedom of the F statistic.
rdf: Model residual degrees of freedom.
n: Number of independent samples.
Returns
Returns a scalar or vector argument of the robust effect size index estimate.
Details
The formula for converting an F statistic to S is:
S=(max(0,(f∗df∗(rdf−2)/rdf−df)/n))
The estimator is derived by setting the statistic equal to the expected value of the test statistic and solving for S.
Examples
# to obtain example F values, first fit a lmmod = lm(charges ~ region * age + bmi + sex, data = RESI::insurance)# run Anova, using a robust variance-covariance function# get the F values and Df valuesfs = car::Anova(mod, vcov. = sandwich::vcovHC)[1:5,"F"]dfs = car::Anova(mod, vcov. = sandwich::vcovHC)[1:5,"Df"]# get RESI estimatesf2S(fs, df = dfs, rdf = mod$df.residual, n = nrow(RESI::insurance))