Predicted values based on multilevel models employing the GMM approach for hierarchical data with endogenous regressors.
## S3 method for class 'rendo.multilevel'predict( object, newdata, model = c("REF","FE_L2","FE_L3","GMM_L2","GMM_L3"),...)
Arguments
object: Object of class inheriting from "rendo.multilevel"
newdata: An optional data frame in which to look for variables with which to predict. If omitted, the fitted values for the specified model are returned.
model: character string to indicate for which fitted model predictions are made. Possible values are: "REF", "FE_L2", "FE_L3", "GMM_L2", or "GMM_L3".
...: ignored, for consistency with the generic function.
Returns
predict.rendo.multilevel produces a vector of predictions
Examples
data("dataMultilevelIV")# Two levelsres.ml.L2 <- multilevelIV(y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 + X31 + X32 + X33 +(1|SID)| endo(X15), data = dataMultilevelIV, verbose =FALSE)predict(res.ml.L2, model ="FE_L2")# using the data used for fitting also for predicting,# correctly results in fitted valuesall.equal(predict(res.ml.L2, dataMultilevelIV, model ="GMM_L2"), fitted(res.ml.L2, model ="GMM_L2"))# TRUE