MetaModel function

Function to produce a sequence of meta models that are the solutions of the RKHS Ridge Group Sparse or RKHS Group Lasso optimization problems.

Function to produce a sequence of meta models that are the solutions of the RKHS Ridge Group Sparse or RKHS Group Lasso optimization problems.

Calculates the Gram matrices KvK_v for a chosen reproducing kernel and fits the solution of an RKHS ridge group sparse or an RKHS group lasso problem for each pair of penalty parameters (μ,γ)(\mu,\gamma), for the Gaussian regression model.

RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, verbose)

Arguments

  • Y: Vector of response observations of size nn.
  • X: Matrix of observations with nn rows and dd columns.
  • kernel: Character, indicates the type of the reproducing kernel: matern ((matern kernel)), brownian ((brownian kernel)), gaussian ((gaussian kernel)), linear ((linear kernel)), quad ((quadratic kernel)). See the function calc_Kv
  • Dmax: Integer, between 11 and dd, indicates the order of interactions considered in the meta model: Dmax=1=1 is used to consider only the main effects, Dmax=2=2 to include the main effects and the interactions of order 2,2,\ldots. See the function calc_Kv
  • gamma: Vector of non negative scalars, values of the penalty parameter γ\gamma in decreasing order. If γ=0\gamma=0 the function solves an RKHS Group Lasso problem and for γ>0\gamma>0 it solves an RKHS Ridge Group Sparse problem.
  • frc: Vector of positive scalars. Each element of the vector sets a value to the penalty parameter μ\mu, μ=μmax/(n×frc)\mu=\mu_{max}/(\sqrt{n}\times frc). The value μmax\mu_{max} is calculated by the program. See the function mu_max.
  • verbose: Logical, if TRUE, prints: the group vv for which the correction of Gram matrix KvK_v is done, and for each pair of the penalty parameters (μ,γ)(\mu,\gamma): the number of current iteration, active groups and convergence criterias. Set as FALSE by default.

Details

Details.

Returns

List of l components, with l equals to the number of pairs of the penalty parameters (μ,γ)(\mu,\gamma). Each component of the list is a list of 33 components "mu", "gamma" and "Meta-Model": - mu: Positive scalar, penalty parameter μ\mu associated with the estimated Meta-Model.

  • gamma: Positive scalar, an element of the input vector gamma associated with the estimated Meta-Model.

  • Meta-Model: An RKHS Ridge Group Sparse or RKHS Group Lasso object associated with the penalty parameters mu and gamma:

  • intercept: Scalar, estimated value of intercept.

  • teta: Matrix with vMax rows and nn columns. Each row of the matrix is the estimated vector θv\theta_{v} for v=1,...,v=1,...,vMax.

  • fit.v: Matrix with nn rows and vMax columns. Each row of the matrix is the estimated value of fv=Kvθvf_{v}=K_{v}\theta_{v}.

  • fitted: Vector of size nn, indicates the estimator of mm.

  • Norm.n: Vector of size vMax, estimated values for the Ridge penalty norm.

  • Norm.H: Vector of size vMax, estimated values of the Sparse Group penalty norm.

  • supp: Vector of active groups.

  • Nsupp: Vector of the names of the active groups.

  • SCR: Scalar, equals to Yf0vKvθv2\Vert Y-f_{0}-\sum_{v}K_{v}\theta_{v}\Vert ^{2}.

  • crit: Scalar, indicates the value of the penalized criteria.

  • gamma.v: Vector of size vMax, coefficients of the Ridge penalty norm, nγ×\sqrt{n}\gamma\timesgama_v.

  • mu.v: Vector of size vMax, coefficients of the Group Sparse penalty norm, nμ×n\mu\timesmu_v.

  • iter: List of two components: maxIter, and the number of iterations until the convergence is achieved.

  • convergence: TRUE or FALSE. Indicates whether the algorithm has converged or not.

  • RelDiffCrit: Scalar, value of the first convergence criteria at the last iteration, θlastIterθlastIter1θlastIter12\Vert\frac{\theta_{lastIter}-\theta_{lastIter-1}}{\theta_{lastIter-1}}\Vert ^{2}.

  • RelDiffPar: Scalar, value of the second convergence criteria at the last iteration, critlastItercritlastIter1critlastIter1\frac{crit_{lastIter}-crit_{lastIter-1}}{crit_{lastIter-1}}.

References

Kamari, H., Huet, S. and Taupin, M.-L. (2019) RKHSMetaMod : An R package to estimate the Hoeffding decomposition of an unknown function by solving RKHS Ridge Group Sparse optimization problem. arXiv:1905.13695

Author(s)

Halaleh Kamari

Note

For the case γ=0\gamma=0 the outputs "mu"=μg=\mu_g and "Meta-Model" is the same as the one returned by the function RKHSgrplasso.

See Also

calc_Kv, mu_max, RKHSgrplasso, pen_MetMod

Examples

d <- 3 n <- 50 library(lhs) X <- maximinLHS(n, d) c <- c(0.2,0.6,0.8) F <- 1;for (a in 1:d) F <- F*(abs(4*X[,a]-2)+c[a])/(1+c[a]) epsilon <- rnorm(n,0,1);sigma <- 0.2 Y <- F + sigma*epsilon Dmax <- 3 kernel <- "matern" frc <- c(10,100) gamma <- c(.5,.01,.001,0) result <- RKHSMetMod(Y,X,kernel,Dmax,gamma,frc,FALSE) l <- length(result) for(i in 1:l){print(result[[i]]$mu)} for(i in 1:l){print(result[[i]]$gamma)} for(i in 1:l){print(result[[i]]$`Meta-Model`$Nsupp)}
  • Maintainer: Halaleh Kamari
  • License: GPL (>= 2)
  • Last published: 2019-07-06

Useful links