calc_q_function function

Function to fit a solution with q active groups of an RKHS Group Lasso problem.

Function to fit a solution with q active groups of an RKHS Group Lasso problem.

Fits a solution of the group lasso problem based on RKHS, with qq active groups in the obtained solution for the Gaussian regression model. It determines μg(q)\mu_{g}(q), for which the number of active groups in the solution of the RKHS group lasso problem is equal to qq, and returns the RKHS meta model associated with μg(q)\mu_{g}(q).

grplasso_q(Y, Kv, q, rat, Num)

Arguments

  • Y: Vector of response observations of size nn.
  • Kv: List of eigenvalues and eigenvectors of positive definite Gram matrices KvK_v and their associated group names. It should have the same format as the output of the function calc_Kv (see details).
  • q: Integer, the number of active groups in the obtained solution.
  • rat: Positive scalar, used to restrict the minimum value of μg\mu_g, to be evaluted in the RKHS Group Lasso algorithm, μmin=μmax/rat\mu_{min}=\mu_{max}/rat. The value μmax\mu_{max} is calculated inside the program, see function mu_max.
  • Num: Integer, used to restrict the number of different values of the penalty parameter μg\mu_g to be evaluated in the RKHS Group Lasso algorithm, until it achieves μg(q)\mu_g(q): for Num =1= 1 the program is done for 33 values of μg\mu_g, μ1=(μmin+μmax)/2\mu_{1}=(\mu_{min}+\mu_{max})/2, μ2=(μmin+μ1)/2\mu_{2}=(\mu_{min}+\mu_{1})/2 or μ2=(μ1+μmax)/2\mu_{2}=(\mu_{1}+\mu_{max})/2 depending on the value of qq associated with μ1\mu_{1}, μ3=μmin\mu_{3}=\mu_{min}.

Details

Input Kv should contain the eigenvalues and eigenvectors of positive definite Gram matrices KvK_v. It is necessary to set input "correction" in the function calc_Kv equal to "TRUE".

Returns

List of 44 components: "mus", "qs", "mu", "res": - mus: Vector, values of the evaluated penalty parameters μg\mu_g in the RKHS group lasso algorithm until it achieves μg(q)\mu_{g}(q).

  • qs: Vector, number of active groups associated with each value of μg\mu_g in mus.

  • mu: Scalar, value of μg(q)\mu_{g}(q).

  • res: An RKHS Group Lasso object:

  • intercept: Scalar, estimated value of intercept.

  • teta: Matrix with vMax rows and nn columns. Each row of the matrix is the estimated vector θv\theta_{v} for v=1,...,v=1,...,vMax.

  • fit.v: Matrix with nn rows and vMax columns. Each row of the matrix is the estimated value of fv=Kvθvf_{v}=K_{v}\theta_{v}.

  • fitted: Vector of size nn, indicates the estimator of mm.

  • Norm.H: Vector of size vMax, estimated values of the penalty norm.

  • supp: Vector of active groups.

  • Nsupp: Vector of the names of the active groups.

  • SCR: Scalar, equals to Yf0vKvθv2\Vert Y-f_{0}-\sum_{v}K_{v}\theta_{v}\Vert ^{2}.

  • crit: Scalar, indicates the value of the penalized criteria.

  • MaxIter: Integer, number of iterations until convergence is reached.

  • convergence: TRUE or FALSE. Indicates whether the algorithm has converged or not.

  • RelDiffCrit: Scalar, value of the first convergence criteria at the last iteration, critlastItercritlastIter1critlastIter1\frac{crit_{lastIter}-crit_{lastIter-1}}{crit_{lastIter-1}}.

  • RelDiffPar: Scalar, value of the second convergence criteria at the last iteration, θlastIterθlastIter1θlastIter12\Vert\frac{\theta_{lastIter}-\theta_{lastIter-1}}{\theta_{lastIter-1}}\Vert ^{2}.

References

Kamari, H., Huet, S. and Taupin, M.-L. (2019) RKHSMetaMod : An R package to estimate the Hoeffding decomposition of an unknown function by solving RKHS Ridge Group Sparse optimization problem. arXiv:1905.13695

Author(s)

Halaleh Kamari

Note

Note.

See Also

calc_Kv, mu_max

Examples

d <- 3 n <- 50 library(lhs) X <- maximinLHS(n, d) c <- c(0.2,0.6,0.8) F <- 1;for (a in 1:d) F <- F*(abs(4*X[,a]-2)+c[a])/(1+c[a]) epsilon <- rnorm(n,0,1);sigma <- 0.2 Y <- F + sigma*epsilon Dmax <- 3 kernel <- "matern" Kv <- calc_Kv(X, kernel, Dmax, TRUE, TRUE) result <- grplasso_q(Y,Kv,5,100 ,Num=10) result$mu result$res$Nsupp
  • Maintainer: Halaleh Kamari
  • License: GPL (>= 2)
  • Last published: 2019-07-06

Useful links