group_lasso_function function

Function to fit a solution of an RKHS Group Lasso problem.

Function to fit a solution of an RKHS Group Lasso problem.

Fits the solution of an RKHS group lasso problem for the Gaussian regression model.

RKHSgrplasso(Y, Kv, mu, maxIter, verbose)

Arguments

  • Y: Vector of response observations of size nn.
  • Kv: List, includes the eigenvalues and eigenvectors of the positive definite Gram matrices Kv,v=1,...,K_v, v=1,...,vMax and their associated group names. It should have the same format as the output of the function calc_Kv (see details).
  • mu: Positive scalar, value of the penalty parameter μg\mu_g in the RKHS Group Lasso problem.
  • maxIter: Integer, shows the maximum number of loops through all groups. Set as 10001000 by default.
  • verbose: Logical, if TRUE, prints: the number of current iteration, active groups and convergence criterias. Set as FALSE by default.

Details

Input Kv should contain the eigenvalues and eigenvectors of positive definite Gram matrices KvK_v. It is necessary to set input correction in the function calc_Kv equal to "TRUE".

Returns

Estimated RKHS meta model, list with 1313 components: - intercept: Scalar, estimated value of intercept.

  • teta: Matrix with vMax rows and nn columns. Each row of the matrix is the estimated vector θv\theta_{v} for v=1,...,v=1,...,vMax.

  • fit.v: Matrix with nn rows and vMax columns. Each row of the matrix is the estimated value of fv=Kvθvf_{v}=K_{v}\theta_{v}.

  • fitted: Vector of size nn, indicates the estimator of mm.

  • Norm.H: Vector of size vMax, estimated values of the penalty norm.

  • supp: Vector of active groups.

  • Nsupp: Vector of the names of the active groups.

  • SCR: Scalar, equals to Yf0vKvθv2\Vert Y-f_{0}-\sum_{v}K_{v}\theta_{v}\Vert ^{2}.

  • crit: Scalar, indicates the value of penalized criteria.

  • MaxIter: Integer, number of iterations until convergence is reached.

  • convergence: TRUE or FALSE. Indicates whether the algorithm has converged or not.

  • RelDiffCrit: Scalar, value of the first convergence criteria at the last iteration, critlastItercritlastIter1critlastIter1\frac{crit_{lastIter}-crit_{lastIter-1}}{crit_{lastIter-1}}.

  • RelDiffPar: Scalar, value of the second convergence criteria at the last iteration, θlastIterθlastIter1θlastIter12\Vert\frac{\theta_{lastIter}-\theta_{lastIter-1}}{\theta_{lastIter-1}}\Vert ^{2}.

References

Kamari, H., Huet, S. and Taupin, M.-L. (2019) RKHSMetaMod : An R package to estimate the Hoeffding decomposition of an unknown function by solving RKHS Ridge Group Sparse optimization problem. arXiv:1905.13695

Meier, L. Van de Geer, S. and Buhlmann, P. (2008) The group LASSO for logistic regression. Journal of the Royal Statistical Society Series B. 70. 53-71. 10.1111/j.1467-9868.2007.00627.x.

Author(s)

Halaleh Kamari

Note

Note.

See Also

calc_Kv

Examples

d <- 3 n <- 50 library(lhs) X <- maximinLHS(n, d) c <- c(0.2,0.6,0.8) F <- 1;for (a in 1:d) F <- F*(abs(4*X[,a]-2)+c[a])/(1+c[a]) epsilon <- rnorm(n,0,1);sigma <- 0.2 Y <- F + sigma*epsilon Dmax <- 3 kernel <- "matern" Kv <- calc_Kv(X, kernel, Dmax, TRUE, TRUE) matZ <- Kv$kv mumax <- mu_max(Y, matZ) mug <- mumax/10 gr <- RKHSgrplasso(Y,Kv, mug , 1000, FALSE) gr$Nsupp
  • Maintainer: Halaleh Kamari
  • License: GPL (>= 2)
  • Last published: 2019-07-06

Useful links