GPCA_iteration function

This function makes an iteration of PCA-Gaussianization process

This function makes an iteration of PCA-Gaussianization process

GPCA_iteration(x_prev, extremes = TRUE)

Arguments

  • x_prev: previous set of random variable x
  • extremes: see normalizeGaussian_severalstations

Returns

A GPCA_iteration S3 object which contains the following objects:

x_prev Previous set of random variable, x_prev input variable

x_gauss_prev Marginal Gaussianization of x_prev obtained through normalizeGaussian_severalstations

B_prev rotation matrix (i. e. eigenvector matrix of the covariance matrix of x_gauss_prev

x_next results obtained by multiplying B_prev by x_gauss_prev (see equation 1 of the reference)

Note

This function is based on equation (1) of "PCA Gaussianization for One-Class Remote Sensing Image" by V. Laparra et al., https://www.uv.es/lapeva/papers/SPIE09_one_class.pdf and http://ieeexplore.ieee.org/document/5413808/

Examples

library(RMAWGEN) set.seed(1222) N <- 20 x <- rexp(N) y <- x+rnorm(N) df <- data.frame(x=x,y=y) GPCA <- GPCA_iteration(df,extremes=TRUE) x <- rnorm(N) y <- x+rnorm(N) dfn <- data.frame(x=x,y=y) GPCAn <- GPCA_iteration(dfn,extremes=TRUE)

See Also

GPCA,GPCA_iteration,inv_GPCA_iteration,inv_GPCA

Author(s)

Emanuele Cordano