normalizeGaussian_severalstations function

Converts several samples x random variable extracted by populations represented by the columns of data respectively or sampleto a normally-distributed samples with assinged mean and standard deviation or vice versa in case inverse is TRUE

Converts several samples x random variable extracted by populations represented by the columns of data respectively or sample

to a normally-distributed samples with assinged mean and standard deviation or vice versa in case inverse is TRUE

normalizeGaussian_severalstations(x, data = x, cpf = NULL, mean = 0, sd = 1, inverse = FALSE, step = NULL, prec = 10^-4, type = 3, extremes = TRUE, sample = NULL, origin_x = NULL, origin_data = NULL)

Arguments

  • x: value to be converted
  • data: a sample of data on which a non-parametric probability distribution is estimated
  • cpf: cumulative probability distribution. If NULL (default) is calculated as ecdf(data)
  • mean: mean (expected value) of the normalized random variable. Default is 0.
  • sd: standard deviation of the normalized random variable. Default is 1.
  • inverse: logical value. If TRUE the function works inversely (the opposite way). Default is FALSE.
  • step: vector of values in which step discontinuities of the cumulative probability function occur. Default is NULL
  • prec: amplitude of the neighbourhood of the step discontinuities where cumulative probability function is treated as non-continuous.
  • type: see quantile
  • extremes: logical variable. If TRUE (default) the probability or frequency is multiplied by
NN+1 \frac{N}{N+1}

where NN is the length of data

  • sample: information on how to sample x and data. Default is NULL, this means that the values of each column of x and data belong to the same sample. If x and data are sampled for each month seperately, it is set to monthly.
  • origin_x: date corresponding to the first row of x
  • origin_data: date corresponding to the first row of data

Returns

a matrix with the normalized variable or its inverse

Note

It applies normalizeGaussian for each column of x and data. See the R code for further details

Examples

## Not run: library(RMAWGEN) set.seed(1234) N <- 30 x <- rexp(N) y <- x+rnorm(N) df <- data.frame(x=x,y=y) dfg <- normalizeGaussian_severalstations(df,data=df,extremes=TRUE,inverse=FALSE) dfi <- normalizeGaussian_severalstations(dfg,data=df,extremes=TRUE,inverse=TRUE) N <- 365*2 origin <- "1981-01-01" x <- rexp(N) y <- x+rnorm(N) df <- data.frame(x=x,y=y) dfgm <- normalizeGaussian_severalstations(df,data=df,extremes=TRUE, inverse=FALSE,origin_x=origin,origin_data=origin,sample="monthly") dfim <- normalizeGaussian_severalstations(dfg,data=df,extremes=TRUE, inverse=TRUE,origin_x=origin,origin_data=origin,sample="monthly") ## Compatibility with 'lubridate' package library(lubridate) N <- 30 x <- rexp(N) y <- x+rnorm(N) df <- data.frame(x=x,y=y) dfg <- normalizeGaussian_severalstations(df,data=df,extremes=TRUE,inverse=FALSE) dfi <- normalizeGaussian_severalstations(dfg,data=df,extremes=TRUE,inverse=TRUE) N <- 365*2 origin <- "1981-01-01" x <- rexp(N) y <- x+rnorm(N) df <- data.frame(x=x,y=y) dfgm <- normalizeGaussian_severalstations(df,data=df,extremes=TRUE, inverse=FALSE,origin_x=origin,origin_data=origin,sample="monthly") dfim <- normalizeGaussian_severalstations(dfg,data=df,extremes=TRUE, inverse=TRUE,origin_x=origin,origin_data=origin,sample="monthly") ## End(Not run)

See Also

normalizeGaussian

Author(s)

Emanuele Cordano, Emanuele Eccel