Cone Constructors
Constructor functions for the different cone types. Currently ROI
supports eight different types of cones.
Zero cone
[REMOVE_ME]Kzero={0}[REMOVEME2]
Nonnegative (linear) cone
[REMOVE_ME]Klin={x∣x≥0}[REMOVEME2]
Second-order cone
[REMOVE_ME]Ksoc={(t,x) ∣ ∣∣x∣∣2≤t,x∈Rn,t∈R}[REMOVEME2]
Positive semidefinite cone
[REMOVE_ME]Kpsd={X ∣ min(eig(X))≥0, X=XT, X∈Rn×n}[REMOVEME2]
Exponential cone
[REMOVE_ME]Kexpp={(x,y,z) ∣ yeyx≤z, y0}[REMOVEME2]
Dual exponential cone
[REMOVE_ME]Kexpd={(u,v,w) ∣ −ueuv≤ew,u\<0}[REMOVEME2]
Power cone
[REMOVE_ME]Kpowp={(x,y,z) ∣ xα∗y(1−α)≥∣z∣, x≥0, y≥0}[REMOVEME2]
Dual power cone
[REMOVE_ME]Kpowd={(u,v,w) ∣ (αu)α∗((1−α)v)(1−α)≥∣w∣, u≥0, v≥0}[REMOVEME2]
K_zero(size)
K_lin(size)
K_soc(sizes)
K_psd(sizes)
K_expp(size)
K_expd(size)
K_powp(alpha)
K_powd(alpha)
Arguments
-
size
: a integer giving the size of the cone, if the dimension of the cones is fixed (i.e. zero
, lin
, expp
, expd
) the number of cones is sufficient to define the dimension of the product cone.
-
sizes
: a integer giving the sizes of the cones, if the dimension of the cones is not fixed (i.e. soc
, psd
) we have to define the sizes of each single cone.
-
alpha
: a numeric vector giving the alphas
for the (dual) power cone.
Description
Constructor functions for the different cone types. Currently ROI
supports eight different types of cones.
Kzero={0}
Nonnegative (linear) cone
Klin={x∣x≥0}
Ksoc={(t,x) ∣ ∣∣x∣∣2≤t,x∈Rn,t∈R}
Positive semidefinite cone
Kpsd={X ∣ min(eig(X))≥0, X=XT, X∈Rn×n}
Kexpp={(x,y,z) ∣ yeyx≤z, y0}
Kexpd={(u,v,w) ∣ −ueuv≤ew,u\<0}
Kpowp={(x,y,z) ∣ xα∗y(1−α)≥∣z∣, x≥0, y≥0}
Kpowd={(u,v,w) ∣ (αu)α∗((1−α)v)(1−α)≥∣w∣, u≥0, v≥0}
Examples
K_zero(3) ## 3 equality constraints
K_lin(3) ## 3 constraints where the slack variable s lies in the linear cone