Nonlinear programming with nonlinear constraints.
This function was contributed by Diethelm Wuertz.
nlminb2( start, objective, eqFun = NULL, leqFun = NULL, lower = -Inf, upper = Inf, gradient = NULL, hessian = NULL, control = list() )
start
: numeric vector of start values.objective
: the function to be minimized .eqFun
: functions specifying equal constraints of the form . Default: NULL
(no equal constraints).leqFun
: functions specifying less equal constraints of the form . Default: NULL
(no less equal constraints).lower
: a numeric representing lower variable bounds. Repeated as needed. Default: -Inf
.upper
: a numeric representing upper variable bounds. Repeated as needed. Default: Inf
.gradient
: gradient of . Default: NULL
(no gradiant information).hessian
: hessian of . Default: NULL
(no hessian provided).control
: a list of control parameters. See nlminb()
for details. The parameter "scale"
is set here in contrast to nlminb()
.list()
## Equal constraint function eval_g0_eq <- function( x, params = c(1,1,-1)) { return( params[1]*x^2 + params[2]*x + params[3] ) } eval_f0 <- function( x, ... ) { return( 1 ) }
Diethelm Wuertz