nlminb2 function

Nonlinear programming with nonlinear constraints.

Nonlinear programming with nonlinear constraints.

This function was contributed by Diethelm Wuertz.

nlminb2( start, objective, eqFun = NULL, leqFun = NULL, lower = -Inf, upper = Inf, gradient = NULL, hessian = NULL, control = list() )

Arguments

  • start: numeric vector of start values.
  • objective: the function to be minimized f(x)f(x).
  • eqFun: functions specifying equal constraints of the form hi(x)=0h_i(x) = 0. Default: NULL (no equal constraints).
  • leqFun: functions specifying less equal constraints of the form gi(x)<=0g_i(x) <= 0. Default: NULL (no less equal constraints).
  • lower: a numeric representing lower variable bounds. Repeated as needed. Default: -Inf.
  • upper: a numeric representing upper variable bounds. Repeated as needed. Default: Inf.
  • gradient: gradient of f(x)f(x). Default: NULL (no gradiant information).
  • hessian: hessian of f(x)f(x). Default: NULL (no hessian provided).
  • control: a list of control parameters. See nlminb() for details. The parameter "scale" is set here in contrast to nlminb() .

Returns

list()

Examples

## Equal constraint function eval_g0_eq <- function( x, params = c(1,1,-1)) { return( params[1]*x^2 + params[2]*x + params[3] ) } eval_f0 <- function( x, ... ) { return( 1 ) }

Author(s)

Diethelm Wuertz

  • Maintainer: Stefan Theussl
  • License: GPL-3
  • Last published: 2023-04-20