Generalized Information Criterion (GIC) to compare models fit by Maximum Likelihood (ML) or Penalized Likelihood (PL).
Generalized Information Criterion (GIC) to compare models fit by Maximum Likelihood (ML) or Penalized Likelihood (PL).
The GIC allows comparing models fit by Maximum Likelihood (ML) or Penalized Likelihood (PL).
## S3 method for class 'fit_pl.rpanda'GIC(object,...)
Arguments
object: An object of class "fit_pl.rpanda". See ?fit_t_pl
...: Options to be passed through.
Returns
a list with the following components
LogLikelihood: the log-likelihood estimated for the model with estimated parameters
GIC: the GIC criterion
bias: the value of the bias term estimated to compute the GIC
Details
GIC allows comparing the fit of various models estimated by Penalized Likelihood (see ?fit_t_pl). It's a wrapper to the gic_criterion function.
References
Konishi S., Kitagawa G. 1996. Generalised information criteria in model selection. Biometrika. 83:875-890.
Clavel, J., Aristide, L., Morlon, H., 2019. A Penalized Likelihood framework for high-dimensional phylogenetic comparative methods and an application to new-world monkeys brain evolution. Syst. Biol. 68: 93-116.
Author(s)
J. Clavel
See Also
gic_criterion, fit_t_pl
mvgls
Examples
if(require(mvMORPH)){if(test){ set.seed(1) n <-32# number of species p <-40# number of traits tree <- pbtree(n=n)# phylogenetic tree R <- Posdef(p)# a random symmetric matrix (covariance)# simulate a dataset Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R)) fit1 <- fit_t_pl(Y, tree, model="BM", method="RidgeAlt") fit2 <- fit_t_pl(Y, tree, model="OU", method="RidgeAlt") GIC(fit1); GIC(fit2)}}