Gets the Maximum A Posteriori for each ClaDS0 parameter
Gets the Maximum A Posteriori for each ClaDS0 parameter
Extract the MAPs (Maximum A Posteriori) for the marginal posterior distributions estimated with run_ClaDS0.
getMAPS_ClaDS0(phylo, sampler, burn=1/2, thin=1)
Arguments
phylo: An object of class 'phylo'.
sampler: The output of a run_ClaDS0 run.
burn: Number of iterations to drop in the beginning of the chains.
thin: Thinning parameter, one iteration out of "thin" is kept to compute the MAPs.
Returns
A vector MAPS containing the MAPs for the marginal posterior distribution for each of the model's parameters.
MAPS[1:3] are the estimated hyperparameters, with MAPS[1] the sigma parameter (new rates stochasticity), MAPS[2] the alpha parameter (new rates trend), and MAPS[3] the initial speciation rate lambda_0.
MAPS[-(1:3)] are the estimated branch-specific speciation rates, given in the same order as the phylo$edges.
References
Maliet O., Hartig F. and Morlon H. 2019, A model with many small shifts for estimating species-specific diversificaton rates, Nature Ecology and Evolution, doi 10.1038/s41559-019-0908-0
Author(s)
O. Maliet
See Also
fit_ClaDS0, plot_ClaDS0_chains, getMAPS_ClaDS
Examples
set.seed(1)if(test){obj= sim_ClaDS( lambda_0=0.1, mu_0=0.5, sigma_lamb=0.7, alpha_lamb=0.90, condition="taxa", taxa_stop =20, prune_extinct =TRUE)tree = obj$tree
speciation_rates = obj$lamb[obj$rates]extinction_rates = obj$mu[obj$rates]data("ClaDS0_example")# extract the Maximum A Posteriori for each of the parametersMAPS = getMAPS_ClaDS0(ClaDS0_example$tree, ClaDS0_example$Cl0_chains, thin =10)# plot the simulated (on the left) and inferred speciation rates (on the right)# on the same color scaleplot_ClaDS_phylo(ClaDS0_example$tree, ClaDS0_example$speciation_rates, MAPS[-(1:3)])}