sim.BipartiteEvol function

Simulation of the BipartiteEvol model

Simulation of the BipartiteEvol model

Simulateof the BipartiteEvol model from Maliet et al. (2020)

sim.BipartiteEvol(nx, ny = nx, NG, dSpace = Inf, D = 1, muP, muH, alphaP = 0, alphaH = 0, iniP = 0, iniH = 0, nP = 1, nH = 1, rP = 1, rH = 1, effect = 1, verbose = 100, thin = 1, P = NULL, H = NULL)

Arguments

  • nx: Size of the grid (the grid has size nx * ny)
  • ny: Size of the grid (default to nx, the grid has size nx * ny)
  • NG: Number of time step the model is run
  • dSpace: Size of the dispersal kernel (default to Inf, meaning there are no restrictions on dispersion)
  • D: Dimention of the trait space (default to 3)
  • muP: Mutation probability at reproduction for the individuals of clade P
  • muH: Mutation probability at reproduction for the individuals of clade H
  • alphaP: alpha parameter for clade P (1/alpha is the niche width)
  • alphaH: alpha parameter for clade H (1/alpha is the niche width)
  • iniP: Initial trait value for the individuals in clade P
  • iniH: Initial trait value for the individuals in clade P
  • nP: Number of individuals of clade P killed at each time step
  • nH: Number of individuals of clade H killed at each time step
  • rP: r parameter for clade P (r is the ratio between the fitness maximum and minimum)
  • rH: r parameter for clade H (r is the ratio between the fitness maximum and minimum)
  • effect: Standard deviation of the trait mutation kernel
  • verbose: The simulation
  • thin: The number of iterations between two recording of the state of the model (default to 1)
  • P: Optionnal, used to continue one precedent run: traits of the individuals of clade P at the end of the precedent run
  • H: Optionnal, used to continue one precedent run: traits of the individuals of clade H at the end of the precedent run

Returns

a list with - Pgenealogy: The genalogy of clade P

  • Hgenealogy: The genalogy of clade H

  • xP: The trait values at each time step for clade P

  • xH: The trait values at each time step for cladeH

  • P: The trait values at present for clade P

  • H: The trait values at present for clade P

  • Pmut: The number of new mutations at each time step for clade P

  • Hmut: The number of new mutations at each time step for clade H

  • iniP: The initial trait values for the individuals of clade P used in the simulation

  • iniH: The initial trait values for the individuals of clade H used in the simulation

  • thin.factor: The thin value used in the simulation

References

Maliet, O., Loeuille, N. and Morlon, H. (2020), An individual-based model for the eco-evolutionary emergence of bipartite interaction networks. Ecol Lett. doi:10.1111/ele.13592

Author(s)

O. Maliet

Examples

# run the model set.seed(1) if(test){ mod = sim.BipartiteEvol(nx = 8,ny = 4,NG = 500, D = 3, muP = 0.1 , muH = 0.1, alphaP = 0.12,alphaH = 0.12, rP = 10, rH = 10, verbose = 100, thin = 5) #build the genealogies gen = make_gen.BipartiteEvol(mod) plot(gen$H) #compute the phylogenies phy1 = define_species.BipartiteEvol(gen,threshold=1) #plot the result plot_div.BipartiteEvol(gen,phy1, 1) #build the network net = build_network.BipartiteEvol(gen, phy1) trait.id = 1 plot_net.BipartiteEvol(gen,phy1,trait.id, net,mod, nx = 10, spatial = FALSE) ## add time steps to a former run seed=as.integer(10) set.seed(seed) mod = sim.BipartiteEvol(nx = 8,ny = 4,NG = 500, D = 3, muP = 0.1 , muH = 0.1, alphaP = 0.12,alphaH = 0.12, rP = 10, rH = 10, verbose = 100, thin = 5, P=mod$P,H=mod$H) # former ru output # update the genealogy gen = make_gen.BipartiteEvol(mod, treeP=gen$P, treeH=gen$H) # update the phylogenies... phy1 = define_species.BipartiteEvol(gen,threshold=1) #... and the network net = build_network.BipartiteEvol(gen, phy1) trait.id = 1 plot_net.BipartiteEvol(gen,phy1,trait.id, net,mod, nx = 10, spatial = FALSE) }