scale.: The linear scaling parameter. Values are multiplied by this numeric value.
exponent: The exponentiation scaling parameter. Values are raised to this power.
scale.diagonal: Logical to indicate if diagonal should be included.
scale.only.diagonal: Logical to indicate if only the diagonal should be scaled.
Returns
A square matrix.
Details
The function scales covariances as scale * cov ^exponent, where cov is any covariance or variance in the covariance matrix. Arguments allow inclusion or exclusion or either the diagonal or off-diagonal elements to be scaled. It is assumed that a covariance matrix is scaled, but any square matrix will work.
Examples
## Not run:data(Pupfish)Pupfish$logSize <- log(Pupfish$CS)fit1 <- lm.rrpp(coords ~ logSize, data = Pupfish, iter =0,print.progress =FALSE)fit2 <- lm.rrpp(coords ~ Pop, data = Pupfish, iter =0,print.progress =FALSE)fit3 <- lm.rrpp(coords ~ Sex, data = Pupfish, iter =0,print.progress =FALSE)fit4 <- lm.rrpp(coords ~ logSize + Sex, data = Pupfish, iter =0,print.progress =FALSE)fit5 <- lm.rrpp(coords ~ logSize + Pop, data = Pupfish, iter =0,print.progress =FALSE)fit6 <- lm.rrpp(coords ~ logSize + Sex * Pop, data = Pupfish, iter =0,print.progress =FALSE)modComp1 <- model.comparison(fit1, fit2, fit3, fit4, fit5,fit6, type ="cov.trace")modComp2 <- model.comparison(fit1, fit2, fit3, fit4, fit5,fit6, type ="logLik", tol =0.01)summary(modComp1)summary(modComp2)par(mfcol = c(1,2))plot(modComp1)plot(modComp2)# Comparing fits with covariance matrices# an example for scaling a phylogenetic covariance matrix with# the scaling parameter, lambdadata("PlethMorph")Cov <- PlethMorph$PhyCov
lambda <- seq(0,1,0.1)Cov1 <- scaleCov(Cov, scale. = lambda[1])Cov2 <- scaleCov(Cov, scale. = lambda[2])Cov3 <- scaleCov(Cov, scale. = lambda[3])Cov4 <- scaleCov(Cov, scale. = lambda[4])Cov5 <- scaleCov(Cov, scale. = lambda[5])Cov6 <- scaleCov(Cov, scale. = lambda[6])Cov7 <- scaleCov(Cov, scale. = lambda[7])Cov8 <- scaleCov(Cov, scale. = lambda[8])Cov9 <- scaleCov(Cov, scale. = lambda[9])Cov10 <- scaleCov(Cov, scale. = lambda[10])Cov11 <- scaleCov(Cov, scale. = lambda[11])fit1 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov1)fit2 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov2)fit3 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov3)fit4 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov4)fit5 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov5)fit6 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov6)fit7 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov7)fit8 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov8)fit9 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov9)fit10 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov10)fit11 <- lm.rrpp(SVL ~1, data = PlethMorph, Cov = Cov11)par(mfrow = c(1,1))MC1 <- model.comparison(fit1, fit2, fit3, fit4, fit5, fit6,fit7, fit8, fit9, fit10, fit11,type ="logLik")MC1
plot(MC1)MC2 <- model.comparison(fit1, fit2, fit3, fit4, fit5, fit6,fit7, fit8, fit9, fit10, fit11,type ="logLik", predictor = lambda)MC2
plot(MC2)MC3 <- model.comparison(fit1, fit2, fit3, fit4, fit5, fit6,fit7, fit8, fit9, fit10, fit11,type ="Z", predictor = lambda)MC3
plot(MC3)## End(Not run)