The Eyraud Farlie Gumbel Morgenstern Distribution
Density function, distribution function, quantile function, random generation.
dFGM(u, v, alpha, log = FALSE) pFGM(u, v, alpha, lower.tail=TRUE, log.p = FALSE) qFGM(p, alpha, lower.tail=TRUE, log.p = FALSE) rFGM(n, alpha)
u, v
: vector of quantiles.p
: vector of probabilities.n
: number of observations. If length(n) > 1
, the length is taken to be the number required.alpha
: shape parameter.log, log.p
: logical; if TRUE, probabilities p are given as log(p).lower.tail
: logical; if TRUE (default), probabilities are , otherwise, .The FGM is defined by the following distribution function
for all in [0,1] and in [0,1]. When lower.tail=FALSE
, pFGM
returns the survival copula .
dFGM
gives the density, pFGM
gives the distribution function, qFGM
gives the quantile function, and rFGM
generates random deviates.
The length of the result is determined by n
for rFGM
, and is the maximum of the lengths of the numerical parameters for the other functions.
The numerical parameters other than n
are recycled to the length of the result. Only the first elements of the logical parameters are used.
Nelsen, R. (2006), An Introduction to Copula, Second Edition, Springer.
Christophe Dutang
##### # (1) density function u <- v <- seq(0, 1, length=25) cbind(u, v, dFGM(u, v, 1/2)) cbind(u, v, outer(u, v, dFGM, alpha=1/2)) ##### # (2) distribution function cbind(u, v, pFGM(u, v, 1/2)) cbind(u, v, outer(u, v, pFGM, alpha=1/2))
Useful links