dataRTDE(obs, simu.nb, simu.marg=c("ufrechet","upareto"), simu.cop=c("indep","FGM","Frank"), simu.cop.par=NULL, contamin.eps=NULL, contamin.method=c("NA","max+","+"), contamin.marg=c("ufrechet","upareto"), contamin.cop=c("indep","FGM","Frank"), contamin.cop.par=NULL, control=list())## S3 method for class 'dataRTDE'print(x,...)## S3 method for class 'dataRTDE'summary(object,...)## S3 method for class 'dataRTDE'plot(x, which=1:2,...)
Arguments
obs: bivariate numeric dataset.
simu.nb: a numeric for the sample size of simulated data.
simu.marg: a character string for the marginal distribution: either "ufrechet" (default) or "upareto".
simu.cop: a character string ofr the copula: either "indep" (default), "FGM" or "Frank".
simu.cop.par: a numeric for the copula parameter, default to NULL.
contamin.eps: a numeric for the percentage (of simu.nb) of contaminated data.
contamin.method: a character string for the contamination method: either "NA" (default), "max+" or "+".
contamin.marg: a character string for the marginal distribution: either "ufrechet" (default) or "upareto".
contamin.cop: a character string ofr the copula: either "indep" (default), "FGM" or "Frank".
contamin.cop.par: a numeric for the copula parameter, default to NULL.
control: A list of control paremeters. Unused.
x, object: an object inheriting from "dataRTDE".
...: arguments to be passed to subsequent methods.
which: an integer (1 or 2) to specify whether to plot in original scale or unit-Pareto scale, respectively.
Details
The function dataRTDE handles empirical or simulated data and may add a contamination.
Empirical data: When obs is provided, dataRTDE just wraps the two-column matrix (Xi,Yi)i.
Simulated data: When simu.XXX are provided, dataRTDE simulates random vectors (Xi,Yi)i
from the copula `simu.cop` with parameter `simu.cop.par` and marginal `simu.marg`.
Note that end-user must choose between empirical data (obs is provided) and simulated data (simu.XXX are provided). Not both can be provided. In addition to data handling (Xi,Yi)i, a contamination can be processed by adding new simulated points (X~i,Y~i)i
when contamin.method != "NA". Those points (X~i,Y~i)i are simulated from the copula contamin.cop with parameter contamin.cop.par and marginal contamin.cop.par. If contamin.method != "+", the points (X~i,Y~i)i are the contaminations, while if contamin.method != "max+" the contaminations are obtained by adding the component-wise maximum of the data: (X~i+Xn,n,Y~i)i+Yn,n, where Xn,n=max(X1,...,Xn), idem for Yn,n.
Returns
dataRTDE returns an object of class "dataRTDE"
having the following components:
n: rownumber of data.
n0: rownumber of contamin.
data: original or simulated data.
contamin: contaminated data.
References
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
See Also
See fitRTDE for the fitting process and zvalueRTDE for the z-value computation.
Author(s)
Christophe Dutang
Examples
###### (1) simulationn <-100x <- dataRTDE(simu.nb=n, simu.marg="ufrechet", simu.cop="indep")print(x)summary(x)plot(x, xlab="x", ylab="y")###### (2) part of the workers' compensation datasetx1 <- c(21.798086,22.640528,22.572010,24.789710,25.876764,28.033613,22.525887,12.004031,12.713178,13.596610,14.811727,12.774073,20.245789,24.242468,50.216515,56.099793,58.109747,67.807105,73.852437,84.208474,83.604216,19.507341,20.810822,23.838122,24.212193,25.367578,35.401344,37.580989,12.428727,13.492474,23.471988,24.101833,24.766193,26.078216)x2 <- c(0.538707,0.439184,1.059775,0.560013,1.004997,1.097314,0.609833,0.270222,0.229566,0.596850,0.196539,0.134248,0.489312,0.418218,0.769208,0.649707,0.503919,0.675466,0.545745,1.562266,0.931762,0.291125,0.499927,0.151084,0.141910,0.300373,0.119761,0.141300,0.377662,0.169574,0.243585,0.061215,0.055272,0.312816,0.160196,0.623029,0.280707,0.174422,0.176666,0.153907,0.605122,0.664457,0.348918,0.370878)obs <- dataRTDE(cbind(x1, x2))obs
summary(obs)plot(obs)