RTDEdata function

Data object used for a Tail Dependence model

Data object used for a Tail Dependence model

Data object used for a Tail Dependence model.

dataRTDE(obs, simu.nb, simu.marg=c("ufrechet", "upareto"), simu.cop=c("indep", "FGM", "Frank"), simu.cop.par=NULL, contamin.eps=NULL, contamin.method=c("NA","max+","+"), contamin.marg=c("ufrechet", "upareto"), contamin.cop=c("indep", "FGM", "Frank"), contamin.cop.par=NULL, control=list()) ## S3 method for class 'dataRTDE' print(x, ...) ## S3 method for class 'dataRTDE' summary(object, ...) ## S3 method for class 'dataRTDE' plot(x, which=1:2, ...)

Arguments

  • obs: bivariate numeric dataset.
  • simu.nb: a numeric for the sample size of simulated data.
  • simu.marg: a character string for the marginal distribution: either "ufrechet" (default) or "upareto".
  • simu.cop: a character string ofr the copula: either "indep" (default), "FGM" or "Frank".
  • simu.cop.par: a numeric for the copula parameter, default to NULL.
  • contamin.eps: a numeric for the percentage (of simu.nb) of contaminated data.
  • contamin.method: a character string for the contamination method: either "NA" (default), "max+" or "+".
  • contamin.marg: a character string for the marginal distribution: either "ufrechet" (default) or "upareto".
  • contamin.cop: a character string ofr the copula: either "indep" (default), "FGM" or "Frank".
  • contamin.cop.par: a numeric for the copula parameter, default to NULL.
  • control: A list of control paremeters. Unused.
  • x, object: an object inheriting from "dataRTDE".
  • ...: arguments to be passed to subsequent methods.
  • which: an integer (1 or 2) to specify whether to plot in original scale or unit-Pareto scale, respectively.

Details

The function dataRTDE handles empirical or simulated data and may add a contamination.

  • Empirical data: When obs is provided, dataRTDE just wraps the two-column matrix (Xi,Yi)i(X_i, Y_i)_i.

  • Simulated data: When simu.XXX are provided, dataRTDE simulates random vectors (Xi,Yi)i(X_i, Y_i)_i

     from the copula `simu.cop` with parameter `simu.cop.par` and marginal `simu.marg`.
    

Note that end-user must choose between empirical data (obs is provided) and simulated data (simu.XXX are provided). Not both can be provided. In addition to data handling (Xi,Yi)i(X_i, Y_i)_i, a contamination can be processed by adding new simulated points (X~i,Y~i)i(\tilde X_i, \tilde Y_i)_i

when contamin.method != "NA". Those points (X~i,Y~i)i(\tilde X_i, \tilde Y_i)_i are simulated from the copula contamin.cop with parameter contamin.cop.par and marginal contamin.cop.par. If contamin.method != "+", the points (X~i,Y~i)i(\tilde X_i, \tilde Y_i)_i are the contaminations, while if contamin.method != "max+" the contaminations are obtained by adding the component-wise maximum of the data: (X~i+Xn,n,Y~i)i+Yn,n(\tilde X_i + X_{n,n}, \tilde Y_i)_i + Y_{n,n}, where Xn,n=max(X1,...,Xn)X_{n,n}=max(X_1,...,X_n), idem for Yn,nY_{n,n}.

Returns

dataRTDE returns an object of class "dataRTDE"

having the following components:

  • n: rownumber of data.
  • n0: rownumber of contamin.
  • data: original or simulated data.
  • contamin: contaminated data.

References

C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).

See Also

See fitRTDE for the fitting process and zvalueRTDE for the z-value computation.

Author(s)

Christophe Dutang

Examples

##### # (1) simulation n <- 100 x <- dataRTDE(simu.nb=n, simu.marg="ufrechet", simu.cop="indep") print(x) summary(x) plot(x, xlab="x", ylab="y") ##### # (2) part of the workers' compensation dataset x1 <- c( 21.798086, 22.640528, 22.572010, 24.789710, 25.876764, 28.033613, 22.525887, 12.004031, 12.713178, 13.596610, 14.811727, 12.774073, 20.245789, 24.242468, 50.216515, 56.099793, 58.109747, 67.807105, 73.852437, 84.208474, 83.604216, 19.507341, 20.810822, 23.838122, 24.212193, 25.367578, 35.401344, 37.580989, 12.428727, 13.492474, 23.471988, 24.101833, 24.766193, 26.078216) x2 <- c( 0.538707, 0.439184, 1.059775, 0.560013, 1.004997, 1.097314, 0.609833, 0.270222, 0.229566, 0.596850, 0.196539, 0.134248, 0.489312, 0.418218, 0.769208, 0.649707, 0.503919, 0.675466, 0.545745, 1.562266, 0.931762, 0.291125, 0.499927, 0.151084, 0.141910, 0.300373, 0.119761, 0.141300, 0.377662, 0.169574, 0.243585, 0.061215, 0.055272, 0.312816, 0.160196, 0.623029, 0.280707, 0.174422, 0.176666, 0.153907, 0.605122, 0.664457, 0.348918, 0.370878) obs <- dataRTDE(cbind(x1, x2)) obs summary(obs) plot(obs)
  • Maintainer: Christophe Dutang
  • License: GPL (>= 2)
  • Last published: 2024-10-16

Useful links