Fitting a Tail Dependence model with a Robust Estimator
Fitting a Tail Dependence model with a Robust Estimator
Fit a Tail Dependence model with a Robust Estimator.
fitRTDE(obs, nbpoint, alpha, omega, method="MDPDE", fix.arg=list(rho=-1), boundary.method="log", control=list())## S3 method for class 'fitRTDE'print(x,...)## S3 method for class 'fitRTDE'summary(object,...)## S3 method for class 'fitRTDE'plot(x, which=1:2, main,...)
Arguments
obs: bivariate numeric dataset.
nbpoint: a numeric for the number of largest points to be selected.
alpha: a numeric for the power divergence parameter.
omega: a numeric for omega, see section Details.
method: a character string equals to "MDPDE".
fix.arg: a named list of fixed arguments: either rho only e.g. list(rho=-1)
or rho,delta e.g. list(rho=-1, delta=0).
boundary.method: a character string: either "log" or "simple", see section Details.
control: A list of control paremeters. See section Details.
x, object: an object inheriting from "fitRTDE".
...: arguments to be passed to subsequent methods.
which: an integer (1 or 2) to specify whether to plot eta or delta, respectively.
main: a main title for the plot.
Details
The function fitRTDE fits an extended Pareto distribution (η,τ are fitted while ρ is fixed) on the relative excess of Zω (see zvalueRTDE) using a robust estimator based on the minimum distance power divergence criterion (see MDPD). The boundary enforcement on η,τ is either done by the bounded BFGS algorithm (see optim with method="L-BFGS-B") or by the bounded Nelder-Mead algorithm (see constrOptim with method="Nelder-Mead") .
Returns
fitRTDE returns an object of class "fitRTDE"
having the following components:
n: rownumber of data.
n0: rownumber of contamin.
alpha: a vector of alpha parameters.
omega: a vector of omega parameters.
m: a vector of nbpoint.
rho: a numeric for rho.
eta: estimate of eta.
delta: estimate of delta.
Ztilde: see zvalueRTDE.
References
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).