RTDEzvalue function

The Z-value random variable

The Z-value random variable

Compute the Z-value variable from a bivariate dataset.

zvalueRTDE(obs, omega, nbpoint, output=c("orig", "relexcess"), marg=c("upareto", "ufrechet", "uunif")) ## S3 method for class 'zvalueRTDE' print(x, ...) ## S3 method for class 'zvalueRTDE' summary(object, ...) relexcess(x, nbpoint, ...) ## Default S3 method: relexcess(x, nbpoint, ...) ## S3 method for class 'zvalueRTDE' relexcess(x, nbpoint, ...)

Arguments

  • obs: bivariate numeric dataset.
  • omega: a numeric for omega, see Details.
  • nbpoint: a numeric for the number of largest points to be selected.
  • output: a character string for the output: either "orig" for original value or "relexcess" for relative excess.
  • marg: a character string for the empirical margin transformation: either "upareto" for unit Pareto, "ufrechet" for unit Frechet or "uunif" for unit uniform margin.
  • x, object: an object inheriting from "zvalueRTDE".
  • ...: arguments to be passed to subsequent methods.

Details

Given a bivariate dataset (Xi,Yi)i(X_i, Y_i)_i of nn points, two variables are defined: (1) for output="orig", the Z~ω,i\tilde Z_{\omega,i} variable

Z~ω,i=min(f(RiXn+1),ω1ωf(RiYn+1))min(f(RiX/(n+1)),ω/(1ω)f(RiY/(n+1))) \tilde Z_{\omega,i} = \min \left(f\left(\frac{R_i^X}{n+1}\right),\frac{\omega}{1-\omega} f\left(\frac{R_i^Y}{n+1}\right) \right)\min (f(R_i^X/(n+1)),\omega/(1-\omega) f(R_i^Y/(n+1)) )

where f(x)f(x) is the margin transformation and i=1,...,ni=1,...,n; (2) for output="relexcess", the ZjZ_{j} variable

Z~ω,nm+j,nZ~ω,nm,nZ~ω,nm+j,n/Z~ω,nm,n \frac{\widetilde Z_{\omega,n-m+j,n}}{\widetilde Z_{\omega,n-m,n}}\widetilde Z_{\omega,n-m+j,n}/\widetilde Z_{\omega,n-m,n}

where mm equals nbpoint, j=1,,mj=1,\dots, m, and c("widetildeZomega,1,n,...,\n\\widetilde Z_{\\omega,1,n},...,\n", "widetildeZomega,n,n \\widetilde Z_{\\omega,n,n}") are the order statistics of Z~ω,1,...,Z~ω,n\widetilde Z_{\omega,1},...,\widetilde Z_{\omega,n}. The margin transformation is

f(x)=11x,f(x)=1log(x),f(x)=x,f(x)=1/(1x),f(x)=1/log(x),f(x)=x, f(x) = \frac{1}{1-x}, f(x) = \frac{1}{-\log(x)}, f(x) = x,f(x) = 1/(1-x), f(x) = -1/log(x), f(x) = x,

respectively for unit Pareto (marg="upareto"), unit Frechet (marg="ufrechet") and unit uniform margin (marg="uunif").

Returns

zvalueRTDE computes the Z-variable and returns an object of class "zvalueRTDE"

having the following components type (either "orig" or "relexcess"), omega, Ztilde or Z, n, possibly m.

relexcess computes the relative excesses from a Z-variable and returns an object of class "zvalueRTDE"

of type "relexcess".

References

C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).

See Also

See fitRTDE for the fitting process and dataRTDE for the data-handling process.

Author(s)

Christophe Dutang

Examples

##### # (1) example omega <- 1/2 m <- 10 n <- 100 obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n) #unit Pareto transform zvalueRTDE(obs, omega, output="orig") relexcess(zvalueRTDE(obs, omega, output="orig"), m) zvalueRTDE(obs, omega, nbpoint=m, output="relexcess")
  • Maintainer: Christophe Dutang
  • License: GPL (>= 2)
  • Last published: 2024-10-16

Useful links